module Random::Formatter
Random number formatter.¶ ↑
Formats generated random numbers in many manners. When 'random/formatter'
is required, several methods are added to empty core module Random::Formatter
, making them available as Random’s instance and module methods.
Standard library SecureRandom
is also extended with the module, and the methods described below are available as a module methods in it.
Examples¶ ↑
Generate random hexadecimal strings:
require 'random/formatter' prng = Random.new prng.hex(10) #=> "52750b30ffbc7de3b362" prng.hex(10) #=> "92b15d6c8dc4beb5f559" prng.hex(13) #=> "39b290146bea6ce975c37cfc23" # or just Random.hex #=> "1aed0c631e41be7f77365415541052ee"
Generate random base64 strings:
prng.base64(10) #=> "EcmTPZwWRAozdA==" prng.base64(10) #=> "KO1nIU+p9DKxGg==" prng.base64(12) #=> "7kJSM/MzBJI+75j8" Random.base64(4) #=> "bsQ3fQ=="
Generate random binary strings:
prng.random_bytes(10) #=> "\016\t{\370g\310pbr\301" prng.random_bytes(10) #=> "\323U\030TO\234\357\020\a\337" Random.random_bytes(6) #=> "\xA1\xE6Lr\xC43"
Generate alphanumeric strings:
prng.alphanumeric(10) #=> "S8baxMJnPl" prng.alphanumeric(10) #=> "aOxAg8BAJe" Random.alphanumeric #=> "TmP9OsJHJLtaZYhP"
Generate UUIDs:
prng.uuid #=> "2d931510-d99f-494a-8c67-87feb05e1594" prng.uuid #=> "bad85eb9-0713-4da7-8d36-07a8e4b00eab" Random.uuid #=> "f14e0271-de96-45cc-8911-8910292a42cd"
All methods are available in the standard library SecureRandom
, too:
SecureRandom.hex #=> "05b45376a30c67238eb93b16499e50cf"
Generate a random number in the given range as Random
does
prng.random_number #=> 0.5816771641321361 prng.random_number(1000) #=> 485 prng.random_number(1..6) #=> 3 prng.rand #=> 0.5816771641321361 prng.rand(1000) #=> 485 prng.rand(1..6) #=> 3
Constants
- ALPHANUMERIC
The default character list for
alphanumeric
.
Public Instance Methods
Generate a random alphanumeric string.
The argument n specifies the length, in characters, of the alphanumeric string to be generated. The argument chars specifies the character list which the result is consist of.
If n is not specified or is nil, 16 is assumed. It may be larger in the future.
The result may contain A-Z, a-z and 0-9, unless chars is specified.
require 'random/formatter' Random.alphanumeric #=> "2BuBuLf3WfSKyQbR" # or prng = Random.new prng.alphanumeric(10) #=> "i6K93NdqiH" Random.alphanumeric(4, chars: [*"0".."9"]) #=> "2952" # or prng = Random.new prng.alphanumeric(10, chars: [*"!".."/"]) #=> ",.,++%/''."
# File lib/random/formatter.rb, line 367 def alphanumeric(n = nil, chars: ALPHANUMERIC) n = 16 if n.nil? choose(chars, n) end
Generate a random base64 string.
The argument n specifies the length, in bytes, of the random number to be generated. The length of the result string is about 4/3 of n.
If n is not specified or is nil, 16 is assumed. It may be larger in the future.
The result may contain A-Z, a-z, 0-9, “+”, “/” and “=”.
require 'random/formatter' Random.base64 #=> "/2BuBuLf3+WfSKyQbRcc/A==" # or prng = Random.new prng.base64 #=> "6BbW0pxO0YENxn38HMUbcQ=="
See RFC 3548 for the definition of base64.
# File lib/random/formatter.rb, line 114 def base64(n=nil) [random_bytes(n)].pack("m0") end
Generate a random hexadecimal string.
The argument n specifies the length, in bytes, of the random number to be generated. The length of the resulting hexadecimal string is twice of n.
If n is not specified or is nil, 16 is assumed. It may be larger in the future.
The result may contain 0-9 and a-f.
require 'random/formatter' Random.hex #=> "eb693ec8252cd630102fd0d0fb7c3485" # or prng = Random.new prng.hex #=> "91dc3bfb4de5b11d029d376634589b61"
# File lib/random/formatter.rb, line 92 def hex(n=nil) random_bytes(n).unpack1("H*") end
Generates formatted random number from raw random bytes. See Random#rand
.
Generate a random binary string.
The argument n specifies the length of the result string.
If n is not specified or is nil, 16 is assumed. It may be larger in future.
The result may contain any byte: “x00” - “xff”.
require 'random/formatter' Random.random_bytes #=> "\xD8\\\xE0\xF4\r\xB2\xFC*WM\xFF\x83\x18\xF45\xB6" # or prng = Random.new prng.random_bytes #=> "m\xDC\xFC/\a\x00Uf\xB2\xB2P\xBD\xFF6S\x97"
# File lib/random/formatter.rb, line 71 def random_bytes(n=nil) n = n ? n.to_int : 16 gen_random(n) end
Generates formatted random number from raw random bytes. See Random#rand
.
static VALUE rand_random_number(int argc, VALUE *argv, VALUE obj) { rb_random_t *rnd = try_get_rnd(obj); VALUE v = rand_random(argc, argv, obj, rnd); if (NIL_P(v)) v = rand_random(0, 0, obj, rnd); else if (!v) invalid_argument(argv[0]); return v; }
Generate a random URL-safe base64 string.
The argument n specifies the length, in bytes, of the random number to be generated. The length of the result string is about 4/3 of n.
If n is not specified or is nil, 16 is assumed. It may be larger in the future.
The boolean argument padding specifies the padding. If it is false or nil, padding is not generated. Otherwise padding is generated. By default, padding is not generated because “=” may be used as a URL delimiter.
The result may contain A-Z, a-z, 0-9, “-” and “_”. “=” is also used if padding is true.
require 'random/formatter' Random.urlsafe_base64 #=> "b4GOKm4pOYU_-BOXcrUGDg" # or prng = Random.new prng.urlsafe_base64 #=> "UZLdOkzop70Ddx-IJR0ABg" prng.urlsafe_base64(nil, true) #=> "i0XQ-7gglIsHGV2_BNPrdQ==" prng.urlsafe_base64(nil, true) #=> "-M8rLhr7JEpJlqFGUMmOxg=="
See RFC 3548 for the definition of URL-safe base64.
# File lib/random/formatter.rb, line 145 def urlsafe_base64(n=nil, padding=false) s = [random_bytes(n)].pack("m0") s.tr!("+/", "-_") s.delete!("=") unless padding s end
Generate a random v4 UUID (Universally Unique IDentifier).
require 'random/formatter' Random.uuid #=> "2d931510-d99f-494a-8c67-87feb05e1594" Random.uuid #=> "bad85eb9-0713-4da7-8d36-07a8e4b00eab" # or prng = Random.new prng.uuid #=> "62936e70-1815-439b-bf89-8492855a7e6b"
The version 4 UUID is purely random (except the version). It doesn’t contain meaningful information such as MAC addresses, timestamps, etc.
The result contains 122 random bits (15.25 random bytes).
See RFC9562 for details of UUIDv4.
# File lib/random/formatter.rb, line 169 def uuid ary = random_bytes(16) ary.setbyte(6, (ary.getbyte(6) & 0x0f) | 0x40) ary.setbyte(8, (ary.getbyte(8) & 0x3f) | 0x80) ary.unpack("H8H4H4H4H12").join(?-) end
Generate a random v7 UUID (Universally Unique IDentifier).
require 'random/formatter' Random.uuid_v7 # => "0188d4c3-1311-7f96-85c7-242a7aa58f1e" Random.uuid_v7 # => "0188d4c3-16fe-744f-86af-38fa04c62bb5" Random.uuid_v7 # => "0188d4c3-1af8-764f-b049-c204ce0afa23" Random.uuid_v7 # => "0188d4c3-1e74-7085-b14f-ef6415dc6f31" # |<--sorted-->| |<----- random ---->| # or prng = Random.new prng.uuid_v7 # => "0188ca51-5e72-7950-a11d-def7ff977c98"
The version 7 UUID starts with the least significant 48 bits of a 64 bit Unix timestamp (milliseconds since the epoch) and fills the remaining bits with random data, excluding the version and variant bits.
This allows version 7 UUIDs to be sorted by creation time. Time
ordered UUIDs can be used for better database index locality of newly inserted records, which may have a significant performance benefit compared to random data inserts.
The result contains 74 random bits (9.25 random bytes).
Note that this method cannot be made reproducible because its output includes not only random bits but also timestamp.
See RFC9562 for details of UUIDv7.
Monotonicity¶ ↑
UUIDv7 has millisecond precision by default, so multiple UUIDs created within the same millisecond are not issued in monotonically increasing order. To create UUIDs that are time-ordered with sub-millisecond precision, up to 12 bits of additional timestamp may added with extra_timestamp_bits
. The extra timestamp precision comes at the expense of random bits. Setting extra_timestamp_bits: 12
provides ~244ns of precision, but only 62 random bits (7.75 random bytes).
prng = Random.new Array.new(4) { prng.uuid_v7(extra_timestamp_bits: 12) } # => ["0188d4c7-13da-74f9-8b53-22a786ffdd5a", "0188d4c7-13da-753b-83a5-7fb9b2afaeea", "0188d4c7-13da-754a-88ea-ac0baeedd8db", "0188d4c7-13da-7557-83e1-7cad9cda0d8d"] # |<--- sorted --->| |<-- random --->| Array.new(4) { prng.uuid_v7(extra_timestamp_bits: 8) } # => ["0188d4c7-3333-7a95-850a-de6edb858f7e", "0188d4c7-3333-7ae8-842e-bc3a8b7d0cf9", # <- out of order "0188d4c7-3333-7ae2-995a-9f135dc44ead", # <- out of order "0188d4c7-3333-7af9-87c3-8f612edac82e"] # |<--- sorted -->||<---- random --->|
Any rollbacks of the system clock will break monotonicity. UUIDv7 is based on UTC, which excludes leap seconds and can rollback the clock. To avoid this, the system clock can synchronize with an NTP server configured to use a “leap smear” approach. NTP or PTP will also be needed to synchronize across distributed nodes.
Counters and other mechanisms for stronger guarantees of monotonicity are not implemented. Applications with stricter requirements should follow Section 6.2 of the specification.
# File lib/random/formatter.rb, line 246 def uuid_v7(extra_timestamp_bits: 0) case (extra_timestamp_bits = Integer(extra_timestamp_bits)) when 0 # min timestamp precision ms = Process.clock_gettime(Process::CLOCK_REALTIME, :millisecond) rand = random_bytes(10) rand.setbyte(0, rand.getbyte(0) & 0x0f | 0x70) # version rand.setbyte(2, rand.getbyte(2) & 0x3f | 0x80) # variant "%08x-%04x-%s" % [ (ms & 0x0000_ffff_ffff_0000) >> 16, (ms & 0x0000_0000_0000_ffff), rand.unpack("H4H4H12").join("-") ] when 12 # max timestamp precision ms, ns = Process.clock_gettime(Process::CLOCK_REALTIME, :nanosecond) .divmod(1_000_000) extra_bits = ns * 4096 / 1_000_000 rand = random_bytes(8) rand.setbyte(0, rand.getbyte(0) & 0x3f | 0x80) # variant "%08x-%04x-7%03x-%s" % [ (ms & 0x0000_ffff_ffff_0000) >> 16, (ms & 0x0000_0000_0000_ffff), extra_bits, rand.unpack("H4H12").join("-") ] when (0..12) # the generic version is slower than the special cases above rand_a, rand_b1, rand_b2, rand_b3 = random_bytes(10).unpack("nnnN") rand_mask_bits = 12 - extra_timestamp_bits ms, ns = Process.clock_gettime(Process::CLOCK_REALTIME, :nanosecond) .divmod(1_000_000) "%08x-%04x-%04x-%04x-%04x%08x" % [ (ms & 0x0000_ffff_ffff_0000) >> 16, (ms & 0x0000_0000_0000_ffff), 0x7000 | ((ns * (1 << extra_timestamp_bits) / 1_000_000) << rand_mask_bits) | rand_a & ((1 << rand_mask_bits) - 1), 0x8000 | (rand_b1 & 0x3fff), rand_b2, rand_b3 ] else raise ArgumentError, "extra_timestamp_bits must be in 0..12" end end