class Regexp

A regular expression (also called a regexp) is a match pattern (also simply called a pattern).

A common notation for a regexp uses enclosing slash characters:

/foo/

A regexp may be applied to a target string; The part of the string (if any) that matches the pattern is called a match, and may be said to match:

re = /red/
re.match?('redirect') # => true   # Match at beginning of target.
re.match?('bored')    # => true   # Match at end of target.
re.match?('credit')   # => true   # Match within target.
re.match?('foo')      # => false  # No match.

Regexp Uses

A regexp may be used:

Regexp Objects

A regexp object has:

Creating a Regexp

A regular expression may be created with:

Method match

Each of the methods Regexp#match, String#match, and Symbol#match returns a MatchData object if a match was found, nil otherwise; each also sets global variables:

'food'.match(/foo/) # => #<MatchData "foo">
'food'.match(/bar/) # => nil

Operator =~

Each of the operators Regexp#=~, String#=~, and Symbol#=~ returns an integer offset if a match was found, nil otherwise; each also sets global variables:

/bar/ =~ 'foo bar' # => 4
'foo bar' =~ /bar/ # => 4
/baz/ =~ 'foo bar' # => nil

Method match?

Each of the methods Regexp#match?, String#match?, and Symbol#match? returns true if a match was found, false otherwise; none sets global variables:

'food'.match?(/foo/) # => true
'food'.match?(/bar/) # => false

Global Variables

Certain regexp-oriented methods assign values to global variables:

The affected global variables are:

Examples:

# Matched string, but no matched groups.
'foo bar bar baz'.match('bar')
$~ # => #<MatchData "bar">
$& # => "bar"
$` # => "foo "
$' # => " bar baz"
$+ # => nil
$1 # => nil

# Matched groups.
/s(\w{2}).*(c)/.match('haystack')
$~ # => #<MatchData "stac" 1:"ta" 2:"c">
$& # => "stac"
$` # => "hay"
$' # => "k"
$+ # => "c"
$1 # => "ta"
$2 # => "c"
$3 # => nil

# No match.
'foo'.match('bar')
$~ # => nil
$& # => nil
$` # => nil
$' # => nil
$+ # => nil
$1 # => nil

Note that Regexp#match?, String#match?, and Symbol#match? do not set global variables.

Sources

As seen above, the simplest regexp uses a literal expression as its source:

re = /foo/              # => /foo/
re.match('food')        # => #<MatchData "foo">
re.match('good')        # => nil

A rich collection of available subexpressions gives the regexp great power and flexibility:

Special Characters

Regexp special characters, called metacharacters, have special meanings in certain contexts; depending on the context, these are sometimes metacharacters:

. ? - + * ^ \ | $ ( ) [ ] { }

To match a metacharacter literally, backslash-escape it:

# Matches one or more 'o' characters.
/o+/.match('foo')  # => #<MatchData "oo">
# Would match 'o+'.
/o\+/.match('foo') # => nil

To match a backslash literally, backslash-escape it:

/\./.match('\.')  # => #<MatchData ".">
/\\./.match('\.') # => #<MatchData "\\.">

Method Regexp.escape returns an escaped string:

Regexp.escape('.?-+*^\|$()[]{}')
# => "\\.\\?\\-\\+\\*\\^\\\\\\|\\$\\(\\)\\[\\]\\{\\}"

Source Literals

The source literal largely behaves like a double-quoted string; see Regexp Literals.

In particular, a source literal may contain interpolated expressions:

s = 'foo'         # => "foo"
/#{s}/            # => /foo/
/#{s.capitalize}/ # => /Foo/
/#{2 + 2}/        # => /4/

There are differences between an ordinary string literal and a source literal; see Shorthand Character Classes.

Character Classes

A character class is delimited by square brackets; it specifies that certain characters match at a given point in the target string:

# This character class will match any vowel.
re = /B[aeiou]rd/
re.match('Bird') # => #<MatchData "Bird">
re.match('Bard') # => #<MatchData "Bard">
re.match('Byrd') # => nil

A character class may contain hyphen characters to specify ranges of characters:

# These regexps have the same effect.
/[abcdef]/.match('foo') # => #<MatchData "f">
/[a-f]/.match('foo')    # => #<MatchData "f">
/[a-cd-f]/.match('foo') # => #<MatchData "f">

When the first character of a character class is a caret (^), the sense of the class is inverted: it matches any character except those specified.

/[^a-eg-z]/.match('f') # => #<MatchData "f">

A character class may contain another character class. By itself this isn’t useful because [a-z[0-9]] describes the same set as [a-z0-9].

However, character classes also support the && operator, which performs set intersection on its arguments. The two can be combined as follows:

/[a-w&&[^c-g]z]/ # ([a-w] AND ([^c-g] OR z))

This is equivalent to:

/[abh-w]/

Shorthand Character Classes

Each of the following metacharacters serves as a shorthand for a character class:

Anchors

An anchor is a metasequence that matches a zero-width position between characters in the target string.

For a subexpression with no anchor, matching may begin anywhere in the target string:

/real/.match('surrealist') # => #<MatchData "real">

For a subexpression with an anchor, matching must begin at the matched anchor.

Boundary Anchors

Each of these anchors matches a boundary:

Lookaround Anchors

Lookahead anchors:

Lookbehind anchors:

The pattern below uses positive lookahead and positive lookbehind to match text appearing in tags without including the tags in the match:

/(?<=<b>)\w+(?=<\/b>)/.match("Fortune favors the <b>bold</b>.")
# => #<MatchData "bold">

Match-Reset Anchor

Alternation

The vertical bar metacharacter (|) may be used within parentheses to express alternation: two or more subexpressions any of which may match the target string.

Two alternatives:

re = /(a|b)/
re.match('foo') # => nil
re.match('bar') # => #<MatchData "b" 1:"b">

Four alternatives:

re = /(a|b|c|d)/
re.match('shazam') # => #<MatchData "a" 1:"a">
re.match('cold')   # => #<MatchData "c" 1:"c">

Each alternative is a subexpression, and may be composed of other subexpressions:

re = /([a-c]|[x-z])/
re.match('bar') # => #<MatchData "b" 1:"b">
re.match('ooz') # => #<MatchData "z" 1:"z">

Method Regexp.union provides a convenient way to construct a regexp with alternatives.

Quantifiers

A simple regexp matches one character:

/\w/.match('Hello')  # => #<MatchData "H">

An added quantifier specifies how many matches are required or allowed:

Greedy, Lazy, or Possessive Matching

Quantifier matching may be greedy, lazy, or possessive:

More:

Groups and Captures

A simple regexp has (at most) one match:

re = /\d\d\d\d-\d\d-\d\d/
re.match('1943-02-04')      # => #<MatchData "1943-02-04">
re.match('1943-02-04').size # => 1
re.match('foo')             # => nil

Adding one or more pairs of parentheses, (subexpression), defines groups, which may result in multiple matched substrings, called captures:

re = /(\d\d\d\d)-(\d\d)-(\d\d)/
re.match('1943-02-04')      # => #<MatchData "1943-02-04" 1:"1943" 2:"02" 3:"04">
re.match('1943-02-04').size # => 4

The first capture is the entire matched string; the other captures are the matched substrings from the groups.

A group may have a quantifier:

re = /July 4(th)?/
re.match('July 4')   # => #<MatchData "July 4" 1:nil>
re.match('July 4th') # => #<MatchData "July 4th" 1:"th">

re = /(foo)*/
re.match('')       # => #<MatchData "" 1:nil>
re.match('foo')    # => #<MatchData "foo" 1:"foo">
re.match('foofoo') # => #<MatchData "foofoo" 1:"foo">

re = /(foo)+/
re.match('')       # => nil
re.match('foo')    # => #<MatchData "foo" 1:"foo">
re.match('foofoo') # => #<MatchData "foofoo" 1:"foo">

The returned MatchData object gives access to the matched substrings:

re = /(\d\d\d\d)-(\d\d)-(\d\d)/
md = re.match('1943-02-04')
# => #<MatchData "1943-02-04" 1:"1943" 2:"02" 3:"04">
md[0] # => "1943-02-04"
md[1] # => "1943"
md[2] # => "02"
md[3] # => "04"

Non-Capturing Groups

A group may be made non-capturing; it is still a group (and, for example, can have a quantifier), but its matching substring is not included among the captures.

A non-capturing group begins with ?: (inside the parentheses):

# Don't capture the year.
re = /(?:\d\d\d\d)-(\d\d)-(\d\d)/
md = re.match('1943-02-04') # => #<MatchData "1943-02-04" 1:"02" 2:"04">

Backreferences

A group match may also be referenced within the regexp itself; such a reference is called a backreference:

/[csh](..) [csh]\1 in/.match('The cat sat in the hat')
# => #<MatchData "cat sat in" 1:"at">

This table shows how each subexpression in the regexp above matches a substring in the target string:

| Subexpression in Regexp   | Matching Substring in Target String |
|---------------------------|-------------------------------------|
|       First '[csh]'       |            Character 'c'            |
|          '(..)'           |        First substring 'at'         |
|      First space ' '      |      First space character ' '      |
|       Second '[csh]'      |            Character 's'            |
| '\1' (backreference 'at') |        Second substring 'at'        |
|           ' in'           |            Substring ' in'          |

A regexp may contain any number of groups:

Named Captures

As seen above, a capture can be referred to by its number. A capture can also have a name, prefixed as ?<name> or ?'name', and the name (symbolized) may be used as an index in MatchData[]:

md = /\$(?<dollars>\d+)\.(?'cents'\d+)/.match("$3.67")
# => #<MatchData "$3.67" dollars:"3" cents:"67">
md[:dollars]  # => "3"
md[:cents]    # => "67"
# The capture numbers are still valid.
md[2]         # => "67"

When a regexp contains a named capture, there are no unnamed captures:

/\$(?<dollars>\d+)\.(\d+)/.match("$3.67")
# => #<MatchData "$3.67" dollars:"3">

A named group may be backreferenced as \k<name>:

/(?<vowel>[aeiou]).\k<vowel>.\k<vowel>/.match('ototomy')
# => #<MatchData "ototo" vowel:"o">

When (and only when) a regexp contains named capture groups and appears before the =~ operator, the captured substrings are assigned to local variables with corresponding names:

/\$(?<dollars>\d+)\.(?<cents>\d+)/ =~ '$3.67'
dollars # => "3"
cents   # => "67"

Method Regexp#named_captures returns a hash of the capture names and substrings; method Regexp#names returns an array of the capture names.

Atomic Grouping

A group may be made atomic with (?>subexpression).

This causes the subexpression to be matched independently of the rest of the expression, so that the matched substring becomes fixed for the remainder of the match, unless the entire subexpression must be abandoned and subsequently revisited.

In this way subexpression is treated as a non-divisible whole. Atomic grouping is typically used to optimise patterns to prevent needless backtracking .

Example (without atomic grouping):

/".*"/.match('"Quote"') # => #<MatchData "\"Quote\"">

Analysis:

  1. The leading subexpression " in the pattern matches the first character " in the target string.

  2. The next subexpression .* matches the next substring Quote“ (including the trailing double-quote).

  3. Now there is nothing left in the target string to match the trailing subexpression " in the pattern; this would cause the overall match to fail.

  4. The matched substring is backtracked by one position: Quote.

  5. The final subexpression " now matches the final substring ", and the overall match succeeds.

If subexpression .* is grouped atomically, the backtracking is disabled, and the overall match fails:

/"(?>.*)"/.match('"Quote"') # => nil

Atomic grouping can affect performance; see Atomic Group.

Subexpression Calls

As seen above, a backreference number (\n) or name (\k<name>) gives access to a captured substring; the corresponding regexp subexpression may also be accessed, via the number (\gn) or name (\g<name>):

/\A(?<paren>\(\g<paren>*\))*\z/.match('(())')
# ^1
#      ^2
#           ^3
#                 ^4
#      ^5
#           ^6
#                      ^7
#                       ^8
#                       ^9
#                           ^10

The pattern:

  1. Matches at the beginning of the string, i.e. before the first character.

  2. Enters a named group paren.

  3. Matches the first character in the string, '('.

  4. Calls the paren group again, i.e. recurses back to the second step.

  5. Re-enters the paren group.

  6. Matches the second character in the string, '('.

  7. Attempts to call paren a third time, but fails because doing so would prevent an overall successful match.

  8. Matches the third character in the string, ')'; marks the end of the second recursive call

  9. Matches the fourth character in the string, ')'.

  10. Matches the end of the string.

See Subexpression calls.

Conditionals

The conditional construct takes the form (?(cond)yes|no), where:

Examples:

re = /\A(foo)?(?(1)(T)|(F))\z/
re.match('fooT') # => #<MatchData "fooT" 1:"foo" 2:"T" 3:nil>
re.match('F')    # => #<MatchData "F" 1:nil 2:nil 3:"F">
re.match('fooF') # => nil
re.match('T')    # => nil

re = /\A(?<xyzzy>foo)?(?(<xyzzy>)(T)|(F))\z/
re.match('fooT') # => #<MatchData "fooT" xyzzy:"foo">
re.match('F')    # => #<MatchData "F" xyzzy:nil>
re.match('fooF') # => nil
re.match('T')    # => nil

Absence Operator

The absence operator is a special group that matches anything which does not match the contained subexpressions.

/(?~real)/.match('surrealist') # => #<MatchData "surrea">
/(?~real)ist/.match('surrealist') # => #<MatchData "ealist">
/sur(?~real)ist/.match('surrealist') # => nil

Unicode

Unicode Properties

The /\p{property_name}/ construct (with lowercase p) matches characters using a Unicode property name, much like a character class; property Alpha specifies alphabetic characters:

/\p{Alpha}/.match('a') # => #<MatchData "a">
/\p{Alpha}/.match('1') # => nil

A property can be inverted by prefixing the name with a caret character (^):

/\p{^Alpha}/.match('1') # => #<MatchData "1">
/\p{^Alpha}/.match('a') # => nil

Or by using \P (uppercase P):

/\P{Alpha}/.match('1') # => #<MatchData "1">
/\P{Alpha}/.match('a') # => nil

See Unicode Properties for regexps based on the numerous properties.

Some commonly-used properties correspond to POSIX bracket expressions:

These are also commonly used:

Unicode Character Categories

A Unicode character category name:

Examples:

/\p{lu}/                # => /\p{lu}/
/\p{LU}/                # => /\p{LU}/
/\p{Uppercase Letter}/  # => /\p{Uppercase Letter}/
/\p{Uppercase_Letter}/  # => /\p{Uppercase_Letter}/
/\p{UPPERCASE-LETTER}/  # => /\p{UPPERCASE-LETTER}/

Below are the Unicode character category abbreviations and names. Enumerations of characters in each category are at the links.

Letters:

Marks:

Numbers:

Punctation:

Unicode Scripts and Blocks

Among the Unicode properties are:

POSIX Bracket Expressions

A POSIX bracket expression is also similar to a character class. These expressions provide a portable alternative to the above, with the added benefit of encompassing non-ASCII characters:

The POSIX bracket expressions:

Ruby also supports these (non-POSIX) bracket expressions:

Comments

A comment may be included in a regexp pattern using the (?#comment) construct, where comment is a substring that is to be ignored. arbitrary text ignored by the regexp engine:

/foo(?#Ignore me)bar/.match('foobar') # => #<MatchData "foobar">

The comment may not include an unescaped terminator character.

See also Extended Mode.

Modes

Each of these modifiers sets a mode for the regexp:

Any, all, or none of these may be applied.

Modifiers i, m, and x may be applied to subexpressions:

Example:

re = /(?i)te(?-i)st/
re.match('test') # => #<MatchData "test">
re.match('TEst') # => #<MatchData "TEst">
re.match('TEST') # => nil
re.match('teST') # => nil

re = /t(?i:e)st/
re.match('test') # => #<MatchData "test">
re.match('tEst') # => #<MatchData "tEst">
re.match('tEST') # => nil

Method Regexp#options returns an integer whose value showing the settings for case-insensitivity mode, multiline mode, and extended mode.

Case-Insensitive Mode

By default, a regexp is case-sensitive:

/foo/.match('FOO')  # => nil

Modifier i enables case-insensitive mode:

/foo/i.match('FOO')
# => #<MatchData "FOO">

Method Regexp#casefold? returns whether the mode is case-insensitive.

Multiline Mode

The multiline-mode in Ruby is what is commonly called a “dot-all mode”:

Unlike other languages, the modifier m does not affect the anchors ^ and $. These anchors always match at line-boundaries in Ruby.

Extended Mode

Modifier x enables extended mode, which means that:

In extended mode, whitespace and comments may be used to form a self-documented regexp.

Regexp not in extended mode (matches some Roman numerals):

pattern = '^M{0,3}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$'
re = /#{pattern}/
re.match('MCMXLIII') # => #<MatchData "MCMXLIII" 1:"CM" 2:"XL" 3:"III">

Regexp in extended mode:

pattern = <<-EOT
  ^                   # beginning of string
  M{0,3}              # thousands - 0 to 3 Ms
  (CM|CD|D?C{0,3})    # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 Cs),
                      #            or 500-800 (D, followed by 0 to 3 Cs)
  (XC|XL|L?X{0,3})    # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 Xs),
                      #        or 50-80 (L, followed by 0 to 3 Xs)
  (IX|IV|V?I{0,3})    # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 Is),
                      #        or 5-8 (V, followed by 0 to 3 Is)
  $                   # end of string
EOT
re = /#{pattern}/x
re.match('MCMXLIII') # => #<MatchData "MCMXLIII" 1:"CM" 2:"XL" 3:"III">

Interpolation Mode

Modifier o means that the first time a literal regexp with interpolations is encountered, the generated Regexp object is saved and used for all future evaluations of that literal regexp. Without modifier o, the generated Regexp is not saved, so each evaluation of the literal regexp generates a new Regexp object.

Without modifier o:

def letters; sleep 5; /[A-Z][a-z]/; end
words = %w[abc def xyz]
start = Time.now
words.each {|word| word.match(/\A[#{letters}]+\z/) }
Time.now - start # => 15.0174892

With modifier o:

start = Time.now
words.each {|word| word.match(/\A[#{letters}]+\z/o) }
Time.now - start # => 5.0010866

Note that if the literal regexp does not have interpolations, the o behavior is the default.

Encodings

By default, a regexp with only US-ASCII characters has US-ASCII encoding:

re = /foo/
re.source.encoding # => #<Encoding:US-ASCII>
re.encoding        # => #<Encoding:US-ASCII>

A regular expression containing non-US-ASCII characters is assumed to use the source encoding. This can be overridden with one of the following modifiers.

A regexp can be matched against a target string when either:

If a match between incompatible encodings is attempted an Encoding::CompatibilityError exception is raised.

Example:

re = eval("# encoding: ISO-8859-1\n/foo\\xff?/")
re.encoding                 # => #<Encoding:ISO-8859-1>
re =~ "foo".encode("UTF-8") # => 0
re =~ "foo\u0100"           # Raises Encoding::CompatibilityError

The encoding may be explicitly fixed by including Regexp::FIXEDENCODING in the second argument for Regexp.new:

# Regexp with encoding ISO-8859-1.
re = Regexp.new("a".force_encoding('iso-8859-1'), Regexp::FIXEDENCODING)
re.encoding  # => #<Encoding:ISO-8859-1>
# Target string with encoding UTF-8.
s = "a\u3042"
s.encoding   # => #<Encoding:UTF-8>
re.match(s)  # Raises Encoding::CompatibilityError.

Timeouts

When either a regexp source or a target string comes from untrusted input, malicious values could become a denial-of-service attack; to prevent such an attack, it is wise to set a timeout.

Regexp has two timeout values:

When regexp.timeout is nil, the timeout “falls through” to Regexp.timeout; when regexp.timeout is non-nil, that value controls timing out:

| regexp.timeout Value | Regexp.timeout Value |            Result           |
|----------------------|----------------------|-----------------------------|
|         nil          |          nil         |       Never times out.      |
|         nil          |         Float        | Times out in Float seconds. |
|        Float         |          Any         | Times out in Float seconds. |

Optimization

For certain values of the pattern and target string, matching time can grow polynomially or exponentially in relation to the input size; the potential vulnerability arising from this is the regular expression denial-of-service (ReDoS) attack.

Regexp matching can apply an optimization to prevent ReDoS attacks. When the optimization is applied, matching time increases linearly (not polynomially or exponentially) in relation to the input size, and a ReDoS attach is not possible.

This optimization is applied if the pattern meets these criteria:

You can use method Regexp.linear_time? to determine whether a pattern meets these criteria:

Regexp.linear_time?(/a*/)     # => true
Regexp.linear_time?('a*')     # => true
Regexp.linear_time?(/(a*)\1/) # => false

However, an untrusted source may not be safe even if the method returns true, because the optimization uses memoization (which may invoke large memory consumption).

References

Read (online PDF books):

Explore, test (interactive online editor):

Constants

EXTENDED

see Regexp.options and Regexp.new

FIXEDENCODING

see Regexp.options and Regexp.new

IGNORECASE

see Regexp.options and Regexp.new

MULTILINE

see Regexp.options and Regexp.new

NOENCODING

see Regexp.options and Regexp.new

Public Class Methods

compile (*args)

Alias for Regexp.new

escape(string) → new_string

Returns a new string that escapes any characters that have special meaning in a regular expression:

s = Regexp.escape('\*?{}.')      # => "\\\\\\*\\?\\{\\}\\."

For any string s, this call returns a MatchData object:

r = Regexp.new(Regexp.escape(s)) # => /\\\\\\\*\\\?\\\{\\\}\\\./
r.match(s)                       # => #<MatchData "\\\\\\*\\?\\{\\}\\.">
static VALUE
rb_reg_s_quote(VALUE c, VALUE str)
{
    return rb_reg_quote(reg_operand(str, TRUE));
}
json_create (object)

See as_json.

# File ext/json/lib/json/add/regexp.rb, line 9
def self.json_create(object)
  new(object['s'], object['o'])
end
last_match → matchdata or nil
last_match(n) → string or nil
last_match(name) → string or nil

With no argument, returns the value of $~, which is the result of the most recent pattern match (see Regexp global variables):

/c(.)t/ =~ 'cat'  # => 0
Regexp.last_match # => #<MatchData "cat" 1:"a">
/a/ =~ 'foo'      # => nil
Regexp.last_match # => nil

With non-negative integer argument n, returns the _n_th field in the matchdata, if any, or nil if none:

/c(.)t/ =~ 'cat'     # => 0
Regexp.last_match(0) # => "cat"
Regexp.last_match(1) # => "a"
Regexp.last_match(2) # => nil

With negative integer argument n, counts backwards from the last field:

Regexp.last_match(-1)       # => "a"

With string or symbol argument name, returns the string value for the named capture, if any:

/(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/ =~ 'var = val'
Regexp.last_match        # => #<MatchData "var = val" lhs:"var"rhs:"val">
Regexp.last_match(:lhs)  # => "var"
Regexp.last_match('rhs') # => "val"
Regexp.last_match('foo') # Raises IndexError.
static VALUE
rb_reg_s_last_match(int argc, VALUE *argv, VALUE _)
{
    if (rb_check_arity(argc, 0, 1) == 1) {
        VALUE match = rb_backref_get();
        int n;
        if (NIL_P(match)) return Qnil;
        n = match_backref_number(match, argv[0]);
        return rb_reg_nth_match(n, match);
    }
    return match_getter();
}
linear_time?(re)
linear_time?(string, options = 0)

Returns true if matching against re can be done in linear time to the input string.

Regexp.linear_time?(/re/) # => true

Note that this is a property of the ruby interpreter, not of the argument regular expression. Identical regexp can or cannot run in linear time depending on your ruby binary. Neither forward nor backward compatibility is guaranteed about the return value of this method. Our current algorithm is (*1) but this is subject to change in the future. Alternative implementations can also behave differently. They might always return false for everything.

(*1): doi.org/10.1109/SP40001.2021.00032

static VALUE
rb_reg_s_linear_time_p(int argc, VALUE *argv, VALUE self)
{
    struct reg_init_args args;
    VALUE re = reg_extract_args(argc, argv, &args);

    if (NIL_P(re)) {
        re = reg_init_args(rb_reg_alloc(), args.str, args.enc, args.flags);
    }

    return RBOOL(onig_check_linear_time(RREGEXP_PTR(re)));
}
new(string, options = 0, timeout: nil) → regexp
new(regexp, timeout: nil) → regexp

With argument string given, returns a new regexp with the given string and options:

r = Regexp.new('foo') # => /foo/
r.source              # => "foo"
r.options             # => 0

Optional argument options is one of the following:

  • A String of options:

    Regexp.new('foo', 'i')  # => /foo/i
    Regexp.new('foo', 'im') # => /foo/im
    
  • The bit-wise OR of one or more of the constants Regexp::EXTENDED, Regexp::IGNORECASE, Regexp::MULTILINE, and Regexp::NOENCODING:

    Regexp.new('foo', Regexp::IGNORECASE) # => /foo/i
    Regexp.new('foo', Regexp::EXTENDED)   # => /foo/x
    Regexp.new('foo', Regexp::MULTILINE)  # => /foo/m
    Regexp.new('foo', Regexp::NOENCODING)  # => /foo/n
    flags = Regexp::IGNORECASE | Regexp::EXTENDED |  Regexp::MULTILINE
    Regexp.new('foo', flags)              # => /foo/mix
    
  • nil or false, which is ignored.

  • Any other truthy value, in which case the regexp will be case-insensitive.

If optional keyword argument timeout is given, its float value overrides the timeout interval for the class, Regexp.timeout. If nil is passed as +timeout, it uses the timeout interval for the class, Regexp.timeout.

With argument regexp given, returns a new regexp. The source, options, timeout are the same as regexp. options and n_flag arguments are ineffective. The timeout can be overridden by timeout keyword.

options = Regexp::MULTILINE
r = Regexp.new('foo', options, timeout: 1.1) # => /foo/m
r2 = Regexp.new(r)                           # => /foo/m
r2.timeout                                   # => 1.1
r3 = Regexp.new(r, timeout: 3.14)            # => /foo/m
r3.timeout                                   # => 3.14
static VALUE
rb_reg_initialize_m(int argc, VALUE *argv, VALUE self)
{
    struct reg_init_args args;
    VALUE re = reg_extract_args(argc, argv, &args);

    if (NIL_P(re)) {
        reg_init_args(self, args.str, args.enc, args.flags);
    }
    else {
        reg_copy(self, re);
    }

    set_timeout(&RREGEXP_PTR(self)->timelimit, args.timeout);

    return self;
}
escape(string) → new_string

Returns a new string that escapes any characters that have special meaning in a regular expression:

s = Regexp.escape('\*?{}.')      # => "\\\\\\*\\?\\{\\}\\."

For any string s, this call returns a MatchData object:

r = Regexp.new(Regexp.escape(s)) # => /\\\\\\\*\\\?\\\{\\\}\\\./
r.match(s)                       # => #<MatchData "\\\\\\*\\?\\{\\}\\.">
static VALUE
rb_reg_s_quote(VALUE c, VALUE str)
{
    return rb_reg_quote(reg_operand(str, TRUE));
}
timeout → float or nil

It returns the current default timeout interval for Regexp matching in second. nil means no default timeout configuration.

static VALUE
rb_reg_s_timeout_get(VALUE dummy)
{
    double d = hrtime2double(rb_reg_match_time_limit);
    if (d == 0.0) return Qnil;
    return DBL2NUM(d);
}
timeout = float or nil

It sets the default timeout interval for Regexp matching in second. nil means no default timeout configuration. This configuration is process-global. If you want to set timeout for each Regexp, use timeout keyword for Regexp.new.

Regexp.timeout = 1
/^a*b?a*$/ =~ "a" * 100000 + "x" #=> regexp match timeout (RuntimeError)
static VALUE
rb_reg_s_timeout_set(VALUE dummy, VALUE timeout)
{
    rb_ractor_ensure_main_ractor("can not access Regexp.timeout from non-main Ractors");

    set_timeout(&rb_reg_match_time_limit, timeout);

    return timeout;
}
try_convert(object) → regexp or nil

Returns object if it is a regexp:

Regexp.try_convert(/re/) # => /re/

Otherwise if object responds to :to_regexp, calls object.to_regexp and returns the result.

Returns nil if object does not respond to :to_regexp.

Regexp.try_convert('re') # => nil

Raises an exception unless object.to_regexp returns a regexp.

static VALUE
rb_reg_s_try_convert(VALUE dummy, VALUE re)
{
    return rb_check_regexp_type(re);
}
union(*patterns) → regexp
union(array_of_patterns) → regexp

Returns a new regexp that is the union of the given patterns:

r = Regexp.union(%w[cat dog])      # => /cat|dog/
r.match('cat')      # => #<MatchData "cat">
r.match('dog')      # => #<MatchData "dog">
r.match('cog')      # => nil

For each pattern that is a string, Regexp.new(pattern) is used:

Regexp.union('penzance')             # => /penzance/
Regexp.union('a+b*c')                # => /a\+b\*c/
Regexp.union('skiing', 'sledding')   # => /skiing|sledding/
Regexp.union(['skiing', 'sledding']) # => /skiing|sledding/

For each pattern that is a regexp, it is used as is, including its flags:

Regexp.union(/foo/i, /bar/m, /baz/x)
# => /(?i-mx:foo)|(?m-ix:bar)|(?x-mi:baz)/
Regexp.union([/foo/i, /bar/m, /baz/x])
# => /(?i-mx:foo)|(?m-ix:bar)|(?x-mi:baz)/

With no arguments, returns /(?!)/:

Regexp.union # => /(?!)/

If any regexp pattern contains captures, the behavior is unspecified.

static VALUE
rb_reg_s_union_m(VALUE self, VALUE args)
{
    VALUE v;
    if (RARRAY_LEN(args) == 1 &&
        !NIL_P(v = rb_check_array_type(rb_ary_entry(args, 0)))) {
        return rb_reg_s_union(self, v);
    }
    return rb_reg_s_union(self, args);
}

Public Instance Methods

regexp == object → true or false

Returns true if object is another Regexp whose pattern, flags, and encoding are the same as self, false otherwise:

/foo/ == Regexp.new('foo')                          # => true
/foo/ == /foo/i                                     # => false
/foo/ == Regexp.new('food')                         # => false
/foo/ == Regexp.new("abc".force_encoding("euc-jp")) # => false
Alias for: eql?
regexp === string → true or false

Returns true if self finds a match in string:

/^[a-z]*$/ === 'HELLO' # => false
/^[A-Z]*$/ === 'HELLO' # => true

This method is called in case statements:

s = 'HELLO'
case s
when /\A[a-z]*\z/; print "Lower case\n"
when /\A[A-Z]*\z/; print "Upper case\n"
else               print "Mixed case\n"
end # => "Upper case"
static VALUE
rb_reg_eqq(VALUE re, VALUE str)
{
    long start;

    str = reg_operand(str, FALSE);
    if (NIL_P(str)) {
        rb_backref_set(Qnil);
        return Qfalse;
    }
    start = rb_reg_search(re, str, 0, 0);
    return RBOOL(start >= 0);
}
regexp =~ string → integer or nil

Returns the integer index (in characters) of the first match for self and string, or nil if none; also sets the rdoc-ref:Regexp global variables:

/at/ =~ 'input data' # => 7
$~                   # => #<MatchData "at">
/ax/ =~ 'input data' # => nil
$~                   # => nil

Assigns named captures to local variables of the same names if and only if self:

  • Is a regexp literal; see Regexp Literals.

  • Does not contain interpolations; see Regexp interpolation.

  • Is at the left of the expression.

Example:

/(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/ =~ '  x = y  '
p lhs # => "x"
p rhs # => "y"

Assigns nil if not matched:

/(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/ =~ '  x = '
p lhs # => nil
p rhs # => nil

Does not make local variable assignments if self is not a regexp literal:

r = /(?<foo>\w+)\s*=\s*(?<foo>\w+)/
r =~ '  x = y  '
p foo # Undefined local variable
p bar # Undefined local variable

The assignment does not occur if the regexp is not at the left:

'  x = y  ' =~ /(?<foo>\w+)\s*=\s*(?<foo>\w+)/
p foo, foo # Undefined local variables

A regexp interpolation, #{}, also disables the assignment:

r = /(?<foo>\w+)/
/(?<foo>\w+)\s*=\s*#{r}/ =~ 'x = y'
p foo # Undefined local variable
VALUE
rb_reg_match(VALUE re, VALUE str)
{
    long pos = reg_match_pos(re, &str, 0, NULL);
    if (pos < 0) return Qnil;
    pos = rb_str_sublen(str, pos);
    return LONG2FIX(pos);
}
as_json (*)

Methods Regexp#as_json and Regexp.json_create may be used to serialize and deserialize a Regexp object; see Marshal.

Method Regexp#as_json serializes self, returning a 2-element hash representing self:

require 'json/add/regexp'
x = /foo/.as_json
# => {"json_class"=>"Regexp", "o"=>0, "s"=>"foo"}

Method JSON.create deserializes such a hash, returning a Regexp object:

Regexp.json_create(x) # => /foo/
# File ext/json/lib/json/add/regexp.rb, line 28
def as_json(*)
  {
    JSON.create_id => self.class.name,
    'o'            => options,
    's'            => source,
  }
end
casefold?→ true or false

Returns true if the case-insensitivity flag in self is set, false otherwise:

/a/.casefold?           # => false
/a/i.casefold?          # => true
/(?i:a)/.casefold?      # => false
static VALUE
rb_reg_casefold_p(VALUE re)
{
    rb_reg_check(re);
    return RBOOL(RREGEXP_PTR(re)->options & ONIG_OPTION_IGNORECASE);
}
encoding → encoding

Returns the Encoding object that represents the encoding of obj.

VALUE
rb_obj_encoding(VALUE obj)
{
    int idx = rb_enc_get_index(obj);
    if (idx < 0) {
        rb_raise(rb_eTypeError, "unknown encoding");
    }
    return rb_enc_from_encoding_index(idx & ENC_INDEX_MASK);
}
eql?
Also aliased as: ==
fixed_encoding? → true or false

Returns false if self is applicable to a string with any ASCII-compatible encoding; otherwise returns true:

r = /a/                                          # => /a/
r.fixed_encoding?                               # => false
r.match?("\u{6666} a")                          # => true
r.match?("\xa1\xa2 a".force_encoding("euc-jp")) # => true
r.match?("abc".force_encoding("euc-jp"))        # => true

r = /a/u                                        # => /a/
r.fixed_encoding?                               # => true
r.match?("\u{6666} a")                          # => true
r.match?("\xa1\xa2".force_encoding("euc-jp"))   # Raises exception.
r.match?("abc".force_encoding("euc-jp"))        # => true

r = /\u{6666}/                                  # => /\u{6666}/
r.fixed_encoding?                               # => true
r.encoding                                      # => #<Encoding:UTF-8>
r.match?("\u{6666} a")                          # => true
r.match?("\xa1\xa2".force_encoding("euc-jp"))   # Raises exception.
r.match?("abc".force_encoding("euc-jp"))        # => false
static VALUE
rb_reg_fixed_encoding_p(VALUE re)
{
    return RBOOL(FL_TEST(re, KCODE_FIXED));
}
hash → integer

Returns the integer hash value for self.

Related: Object#hash.

VALUE
rb_reg_hash(VALUE re)
{
    st_index_t hashval = reg_hash(re);
    return ST2FIX(hashval);
}
inspect → string

Returns a nicely-formatted string representation of self:

/ab+c/ix.inspect # => "/ab+c/ix"

Related: Regexp#to_s.

static VALUE
rb_reg_inspect(VALUE re)
{
    if (!RREGEXP_PTR(re) || !RREGEXP_SRC(re) || !RREGEXP_SRC_PTR(re)) {
        return rb_any_to_s(re);
    }
    return rb_reg_desc(re);
}
match(string, offset = 0) → matchdata or nil
match(string, offset = 0) {|matchdata| ... } → object

With no block given, returns the MatchData object that describes the match, if any, or nil if none; the search begins at the given character offset in string:

/abra/.match('abracadabra')      # => #<MatchData "abra">
/abra/.match('abracadabra', 4)   # => #<MatchData "abra">
/abra/.match('abracadabra', 8)   # => nil
/abra/.match('abracadabra', 800) # => nil

string = "\u{5d0 5d1 5e8 5d0}cadabra"
/abra/.match(string, 7)          #=> #<MatchData "abra">
/abra/.match(string, 8)          #=> nil
/abra/.match(string.b, 8)        #=> #<MatchData "abra">

With a block given, calls the block if and only if a match is found; returns the block’s value:

/abra/.match('abracadabra') {|matchdata| p matchdata }
# => #<MatchData "abra">
/abra/.match('abracadabra', 4) {|matchdata| p matchdata }
# => #<MatchData "abra">
/abra/.match('abracadabra', 8) {|matchdata| p matchdata }
# => nil
/abra/.match('abracadabra', 8) {|marchdata| fail 'Cannot happen' }
# => nil

Output (from the first two blocks above):

#<MatchData "abra">
#<MatchData "abra">

 /(.)(.)(.)/.match("abc")[2] # => "b"
 /(.)(.)/.match("abc", 1)[2] # => "c"
static VALUE
rb_reg_match_m(int argc, VALUE *argv, VALUE re)
{
    VALUE result = Qnil, str, initpos;
    long pos;

    if (rb_scan_args(argc, argv, "11", &str, &initpos) == 2) {
        pos = NUM2LONG(initpos);
    }
    else {
        pos = 0;
    }

    pos = reg_match_pos(re, &str, pos, &result);
    if (pos < 0) {
        rb_backref_set(Qnil);
        return Qnil;
    }
    rb_match_busy(result);
    if (!NIL_P(result) && rb_block_given_p()) {
        return rb_yield(result);
    }
    return result;
}
match?(string) → true or false
match?(string, offset = 0) → true or false

Returns true or false to indicate whether the regexp is matched or not without updating $~ and other related variables. If the second parameter is present, it specifies the position in the string to begin the search.

/R.../.match?("Ruby")    # => true
/R.../.match?("Ruby", 1) # => false
/P.../.match?("Ruby")    # => false
$&                       # => nil
static VALUE
rb_reg_match_m_p(int argc, VALUE *argv, VALUE re)
{
    long pos = rb_check_arity(argc, 1, 2) > 1 ? NUM2LONG(argv[1]) : 0;
    return rb_reg_match_p(re, argv[0], pos);
}
named_captures → hash

Returns a hash representing named captures of self (see Named Captures):

  • Each key is the name of a named capture.

  • Each value is an array of integer indexes for that named capture.

Examples:

/(?<foo>.)(?<bar>.)/.named_captures # => {"foo"=>[1], "bar"=>[2]}
/(?<foo>.)(?<foo>.)/.named_captures # => {"foo"=>[1, 2]}
/(.)(.)/.named_captures             # => {}
static VALUE
rb_reg_named_captures(VALUE re)
{
    regex_t *reg = (rb_reg_check(re), RREGEXP_PTR(re));
    VALUE hash = rb_hash_new_with_size(onig_number_of_names(reg));
    onig_foreach_name(reg, reg_named_captures_iter, (void*)hash);
    return hash;
}
names → array_of_names

Returns an array of names of captures (see Named Captures):

/(?<foo>.)(?<bar>.)(?<baz>.)/.names # => ["foo", "bar", "baz"]
/(?<foo>.)(?<foo>.)/.names          # => ["foo"]
/(.)(.)/.names                      # => []
static VALUE
rb_reg_names(VALUE re)
{
    VALUE ary;
    rb_reg_check(re);
    ary = rb_ary_new_capa(onig_number_of_names(RREGEXP_PTR(re)));
    onig_foreach_name(RREGEXP_PTR(re), reg_names_iter, (void*)ary);
    return ary;
}
options → integer

Returns an integer whose bits show the options set in self.

The option bits are:

Regexp::IGNORECASE # => 1
Regexp::EXTENDED   # => 2
Regexp::MULTILINE  # => 4

Examples:

/foo/.options    # => 0
/foo/i.options   # => 1
/foo/x.options   # => 2
/foo/m.options   # => 4
/foo/mix.options # => 7

Note that additional bits may be set in the returned integer; these are maintained internally in self, are ignored if passed to Regexp.new, and may be ignored by the caller:

Returns the set of bits corresponding to the options used when creating this regexp (see Regexp::new for details). Note that additional bits may be set in the returned options: these are used internally by the regular expression code. These extra bits are ignored if the options are passed to Regexp::new:

r = /\xa1\xa2/e                 # => /\xa1\xa2/
r.source                        # => "\\xa1\\xa2"
r.options                       # => 16
Regexp.new(r.source, r.options) # => /\xa1\xa2/
static VALUE
rb_reg_options_m(VALUE re)
{
    int options = rb_reg_options(re);
    return INT2NUM(options);
}
source → string

Returns the original string of self:

/ab+c/ix.source # => "ab+c"

Regexp escape sequences are retained:

/\x20\+/.source  # => "\\x20\\+"

Lexer escape characters are not retained:

/\//.source  # => "/"
static VALUE
rb_reg_source(VALUE re)
{
    VALUE str;

    rb_reg_check(re);
    str = rb_str_dup(RREGEXP_SRC(re));
    return str;
}
timeout → float or nil

It returns the timeout interval for Regexp matching in second. nil means no default timeout configuration.

This configuration is per-object. The global configuration set by Regexp.timeout= is ignored if per-object configuration is set.

re = Regexp.new("^a*b?a*$", timeout: 1)
re.timeout               #=> 1.0
re =~ "a" * 100000 + "x" #=> regexp match timeout (RuntimeError)
static VALUE
rb_reg_timeout_get(VALUE re)
{
    rb_reg_check(re);
    double d = hrtime2double(RREGEXP_PTR(re)->timelimit);
    if (d == 0.0) return Qnil;
    return DBL2NUM(d);
}
to_json (*args)

Returns a JSON string representing self:

require 'json/add/regexp'
puts /foo/.to_json

Output:

{"json_class":"Regexp","o":0,"s":"foo"}
# File ext/json/lib/json/add/regexp.rb, line 45
def to_json(*args)
  as_json.to_json(*args)
end
to_s → string

Returns a string showing the options and string of self:

r0 = /ab+c/ix
s0 = r0.to_s # => "(?ix-m:ab+c)"

The returned string may be used as an argument to Regexp.new, or as interpolated text for a Regexp interpolation:

r1 = Regexp.new(s0) # => /(?ix-m:ab+c)/
r2 = /#{s0}/        # => /(?ix-m:ab+c)/

Note that r1 and r2 are not equal to r0 because their original strings are different:

r0 == r1  # => false
r0.source # => "ab+c"
r1.source # => "(?ix-m:ab+c)"

Related: Regexp#inspect.

static VALUE
rb_reg_to_s(VALUE re)
{
    return rb_reg_str_with_term(re, '/');
}
~ rxp → integer or nil

Equivalent to rxp =~ $_:

$_ = "input data"
~ /at/ # => 7
VALUE
rb_reg_match2(VALUE re)
{
    long start;
    VALUE line = rb_lastline_get();

    if (!RB_TYPE_P(line, T_STRING)) {
        rb_backref_set(Qnil);
        return Qnil;
    }

    start = rb_reg_search(re, line, 0, 0);
    if (start < 0) {
        return Qnil;
    }
    start = rb_str_sublen(line, start);
    return LONG2FIX(start);
}