class Range

A Range object represents a collection of values that are between given begin and end values.

You can create an Range object explicitly with:

Beginless Ranges

A beginless range has a definite end value, but a nil begin value. Such a range includes all values up to the end value.

r = (..4)               # => nil..4
r.begin                 # => nil
r.include?(-50)         # => true
r.include?(4)           # => true

r = (...4)              # => nil...4
r.include?(4)           # => false

Range.new(nil, 4)       # => nil..4
Range.new(nil, 4, true) # => nil...4

A beginless range may be used to slice an array:

a = [1, 2, 3, 4]
# Include the third array element in the slice
r = (..2)  # => nil..2
a[r]       # => [1, 2, 3]
# Exclude the third array element from the slice
r = (...2) # => nil...2
a[r]       # => [1, 2]

Method each for a beginless range raises an exception.

Endless Ranges

An endless range has a definite begin value, but a nil end value. Such a range includes all values from the begin value.

r = (1..)         # => 1..
r.end             # => nil
r.include?(50)    # => true

Range.new(1, nil) # => 1..

The literal for an endless range may be written with either two dots or three. The range has the same elements, either way. But note that the two are not equal:

r0 = (1..)           # => 1..
r1 = (1...)          # => 1...
r0.begin == r1.begin # => true
r0.end == r1.end     # => true
r0 == r1             # => false

An endless range may be used to slice an array:

a = [1, 2, 3, 4]
r = (2..) # => 2..
a[r]      # => [3, 4]

Method each for an endless range calls the given block indefinitely:

a = []
r = (1..)
r.each do |i|
  a.push(i) if i.even?
  break if i > 10
end
a # => [2, 4, 6, 8, 10]

A range can be both beginless and endless. For literal beginless, endless ranges, at least the beginning or end of the range must be given as an explicit nil value. It is recommended to use an explicit nil beginning and implicit nil end, since that is what Ruby uses for Range#inspect:

(nil..)    # => (nil..)
(..nil)    # => (nil..)
(nil..nil) # => (nil..)

Ranges and Other Classes

An object may be put into a range if its class implements instance method #<=>. Ruby core classes that do so include Array, Complex, File::Stat, Float, Integer, Kernel, Module, Numeric, Rational, String, Symbol, and Time.

Example:

t0 = Time.now         # => 2021-09-19 09:22:48.4854986 -0500
t1 = Time.now         # => 2021-09-19 09:22:56.0365079 -0500
t2 = Time.now         # => 2021-09-19 09:23:08.5263283 -0500
(t0..t2).include?(t1) # => true
(t0..t1).include?(t2) # => false

A range can be iterated over only if its elements implement instance method succ. Ruby core classes that do so include Integer, String, and Symbol (but not the other classes mentioned above).

Iterator methods include:

Example:

a = []
(1..4).each {|i| a.push(i) }
a # => [1, 2, 3, 4]

Ranges and User-Defined Classes

A user-defined class that is to be used in a range must implement instance method #<=>; see Integer#<=>. To make iteration available, it must also implement instance method succ; see Integer#succ.

The class below implements both #<=> and succ, and so can be used both to construct ranges and to iterate over them. Note that the Comparable module is included so the == method is defined in terms of #<=>.

# Represent a string of 'X' characters.
class Xs
  include Comparable
  attr_accessor :length
  def initialize(n)
    @length = n
  end
  def succ
    Xs.new(@length + 1)
  end
  def <=>(other)
    @length <=> other.length
  end
  def to_s
    sprintf "%2d #{inspect}", @length
  end
  def inspect
    'X' * @length
  end
end

r = Xs.new(3)..Xs.new(6) #=> XXX..XXXXXX
r.to_a                   #=> [XXX, XXXX, XXXXX, XXXXXX]
r.include?(Xs.new(5))    #=> true
r.include?(Xs.new(7))    #=> false

What’s Here

First, what’s elsewhere. Class Range:

Here, class Range provides methods that are useful for:

Methods for Creating a Range

Methods for Querying

Methods for Comparing

Methods for Iterating

Methods for Converting

Methods for Working with JSON

To make these methods available:

require 'json/add/range'

Public Class Methods

json_create (object)

See as_json.

# File ext/json/lib/json/add/range.rb, line 9
def self.json_create(object)
  new(*object['a'])
end
new(begin, end, exclude_end = false) → new_range

Returns a new range based on the given objects begin and end. Optional argument exclude_end determines whether object end is included as the last object in the range:

Range.new(2, 5).to_a            # => [2, 3, 4, 5]
Range.new(2, 5, true).to_a      # => [2, 3, 4]
Range.new('a', 'd').to_a        # => ["a", "b", "c", "d"]
Range.new('a', 'd', true).to_a  # => ["a", "b", "c"]
static VALUE
range_initialize(int argc, VALUE *argv, VALUE range)
{
    VALUE beg, end, flags;

    rb_scan_args(argc, argv, "21", &beg, &end, &flags);
    range_modify(range);
    range_init(range, beg, end, RBOOL(RTEST(flags)));
    return Qnil;
}

Public Instance Methods

%(n) {|element| ... } → self
%(n) → enumerator or arithmetic_sequence

Same as step (but doesn’t provide default value for n). The method is convenient for experssive producing of Enumerator::ArithmeticSequence.

array = [0, 1, 2, 3, 4, 5, 6]

# slice each second element:
seq = (0..) % 2 #=> ((0..).%(2))
array[seq] #=> [0, 2, 4, 6]
# or just
array[(0..) % 2] #=> [0, 2, 4, 6]

Note that due to operator precedence in Ruby, parentheses are mandatory around range in this case:

(0..7) % 2 #=> ((0..7).%(2)) -- as expected
0..7 % 2 #=> 0..1 -- parsed as 0..(7 % 2)
static VALUE
range_percent_step(VALUE range, VALUE step)
{
    return range_step(1, &step, range);
}
self == other → true or false

Returns true if and only if:

  • other is a range.

  • other.begin == self.begin.

  • other.end == self.end.

  • other.exclude_end? == self.exclude_end?.

Otherwise returns false.

r = (1..5)
r == (1..5)                # => true
r = Range.new(1, 5)
r == 'foo'                 # => false
r == (2..5)                # => false
r == (1..4)                # => false
r == (1...5)               # => false
r == Range.new(1, 5, true) # => false

Note that even with the same argument, the return values of == and eql? can differ:

(1..2) == (1..2.0)   # => true
(1..2).eql? (1..2.0) # => false

Related: Range#eql?.

static VALUE
range_eq(VALUE range, VALUE obj)
{
    if (range == obj)
        return Qtrue;
    if (!rb_obj_is_kind_of(obj, rb_cRange))
        return Qfalse;

    return rb_exec_recursive_paired(recursive_equal, range, obj, obj);
}
self === object → true or false

Returns true if object is between self.begin and self.end. false otherwise:

(1..4) === 2       # => true
(1..4) === 5       # => false
(1..4) === 'a'     # => false
(1..4) === 4       # => true
(1...4) === 4      # => false
('a'..'d') === 'c' # => true
('a'..'d') === 'e' # => false

A case statement uses method ===, and so:

case 79
when (1..50)
  "low"
when (51..75)
  "medium"
when (76..100)
  "high"
end # => "high"

case "2.6.5"
when ..."2.4"
  "EOL"
when "2.4"..."2.5"
  "maintenance"
when "2.5"..."3.0"
  "stable"
when "3.1"..
  "upcoming"
end # => "stable"
static VALUE
range_eqq(VALUE range, VALUE val)
{
    return r_cover_p(range, RANGE_BEG(range), RANGE_END(range), val);
}
as_json (*)

Methods Range#as_json and Range.json_create may be used to serialize and deserialize a Range object; see Marshal.

Method Range#as_json serializes self, returning a 2-element hash representing self:

require 'json/add/range'
x = (1..4).as_json     # => {"json_class"=>"Range", "a"=>[1, 4, false]}
y = (1...4).as_json    # => {"json_class"=>"Range", "a"=>[1, 4, true]}
z = ('a'..'d').as_json # => {"json_class"=>"Range", "a"=>["a", "d", false]}

Method JSON.create deserializes such a hash, returning a Range object:

Range.json_create(x) # => 1..4
Range.json_create(y) # => 1...4
Range.json_create(z) # => "a".."d"
# File ext/json/lib/json/add/range.rb, line 31
def as_json(*)
  {
    JSON.create_id  => self.class.name,
    'a'             => [ first, last, exclude_end? ]
  }
end
begin → object

Returns the object that defines the beginning of self.

(1..4).begin # => 1
(..2).begin  # => nil

Related: Range#first, Range#end.

static VALUE
range_begin(VALUE range)
{
    return RANGE_BEG(range);
}
bsearch {|obj| block } → value

Returns an element from self selected by a binary search.

See Binary Searching.

static VALUE
range_bsearch(VALUE range)
{
    VALUE beg, end, satisfied = Qnil;
    int smaller;

    /* Implementation notes:
     * Floats are handled by mapping them to 64 bits integers.
     * Apart from sign issues, floats and their 64 bits integer have the
     * same order, assuming they are represented as exponent followed
     * by the mantissa. This is true with or without implicit bit.
     *
     * Finding the average of two ints needs to be careful about
     * potential overflow (since float to long can use 64 bits).
     *
     * The half-open interval (low, high] indicates where the target is located.
     * The loop continues until low and high are adjacent.
     *
     * -1/2 can be either 0 or -1 in C89. However, when low and high are not adjacent,
     * the rounding direction of mid = (low + high) / 2 does not affect the result of
     * the binary search.
     *
     * Note that -0.0 is mapped to the same int as 0.0 as we don't want
     * (-1...0.0).bsearch to yield -0.0.
     */

#define BSEARCH(conv, excl) \
    do { \
        RETURN_ENUMERATOR(range, 0, 0); \
        if (!(excl)) high++; \
        low--; \
        while (low + 1 < high) { \
            mid = ((high < 0) == (low < 0)) ? low + ((high - low) / 2) \
                : (low + high) / 2; \
            BSEARCH_CHECK(conv(mid)); \
            if (smaller) { \
                high = mid; \
            } \
            else { \
                low = mid; \
            } \
        } \
        return satisfied; \
    } while (0)

#define BSEARCH_FIXNUM(beg, end, excl) \
    do { \
        long low = FIX2LONG(beg); \
        long high = FIX2LONG(end); \
        long mid; \
        BSEARCH(INT2FIX, (excl)); \
    } while (0)

    beg = RANGE_BEG(range);
    end = RANGE_END(range);

    if (FIXNUM_P(beg) && FIXNUM_P(end)) {
        BSEARCH_FIXNUM(beg, end, EXCL(range));
    }
#if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T)
    else if (RB_FLOAT_TYPE_P(beg) || RB_FLOAT_TYPE_P(end)) {
        int64_t low  = double_as_int64(NIL_P(beg) ? -HUGE_VAL : RFLOAT_VALUE(rb_Float(beg)));
        int64_t high = double_as_int64(NIL_P(end) ?  HUGE_VAL : RFLOAT_VALUE(rb_Float(end)));
        int64_t mid;
        BSEARCH(int64_as_double_to_num, EXCL(range));
    }
#endif
    else if (is_integer_p(beg) && is_integer_p(end)) {
        RETURN_ENUMERATOR(range, 0, 0);
        return bsearch_integer_range(beg, end, EXCL(range));
    }
    else if (is_integer_p(beg) && NIL_P(end)) {
        VALUE diff = LONG2FIX(1);
        RETURN_ENUMERATOR(range, 0, 0);
        while (1) {
            VALUE mid = rb_funcall(beg, '+', 1, diff);
            BSEARCH_CHECK(mid);
            if (smaller) {
                if (FIXNUM_P(beg) && FIXNUM_P(mid)) {
                    BSEARCH_FIXNUM(beg, mid, false);
                }
                else {
                    return bsearch_integer_range(beg, mid, false);
                }
            }
            diff = rb_funcall(diff, '*', 1, LONG2FIX(2));
            beg = mid;
        }
    }
    else if (NIL_P(beg) && is_integer_p(end)) {
        VALUE diff = LONG2FIX(-1);
        RETURN_ENUMERATOR(range, 0, 0);
        while (1) {
            VALUE mid = rb_funcall(end, '+', 1, diff);
            BSEARCH_CHECK(mid);
            if (!smaller) {
                if (FIXNUM_P(mid) && FIXNUM_P(end)) {
                    BSEARCH_FIXNUM(mid, end, false);
                }
                else {
                    return bsearch_integer_range(mid, end, false);
                }
            }
            diff = rb_funcall(diff, '*', 1, LONG2FIX(2));
            end = mid;
        }
    }
    else {
        rb_raise(rb_eTypeError, "can't do binary search for %s", rb_obj_classname(beg));
    }
    return range;
}
count → integer
count(object) → integer
count {|element| ... } → integer

Returns the count of elements, based on an argument or block criterion, if given.

With no argument and no block given, returns the number of elements:

(1..4).count      # => 4
(1...4).count     # => 3
('a'..'d').count  # => 4
('a'...'d').count # => 3
(1..).count       # => Infinity
(..4).count       # => Infinity

With argument object, returns the number of object found in self, which will usually be zero or one:

(1..4).count(2)   # => 1
(1..4).count(5)   # => 0
(1..4).count('a')  # => 0

With a block given, calls the block with each element; returns the number of elements for which the block returns a truthy value:

(1..4).count {|element| element < 3 } # => 2

Related: Range#size.

static VALUE
range_count(int argc, VALUE *argv, VALUE range)
{
    if (argc != 0) {
        /* It is odd for instance (1...).count(0) to return Infinity. Just let
         * it loop. */
        return rb_call_super(argc, argv);
    }
    else if (rb_block_given_p()) {
        /* Likewise it is odd for instance (1...).count {|x| x == 0 } to return
         * Infinity. Just let it loop. */
        return rb_call_super(argc, argv);
    }

    VALUE beg = RANGE_BEG(range), end = RANGE_END(range);

    if (NIL_P(beg) || NIL_P(end)) {
        /* We are confident that the answer is Infinity. */
        return DBL2NUM(HUGE_VAL);
    }

    if (is_integer_p(beg)) {
        VALUE size = range_size(range);
        if (!NIL_P(size)) {
            return size;
        }
    }

    return rb_call_super(argc, argv);
}
cover?(object) → true or false
cover?(range) → true or false

Returns true if the given argument is within self, false otherwise.

With non-range argument object, evaluates with <= and <.

For range self with included end value (#exclude_end? == false), evaluates thus:

self.begin <= object <= self.end

Examples:

r = (1..4)
r.cover?(1)     # => true
r.cover?(4)     # => true
r.cover?(0)     # => false
r.cover?(5)     # => false
r.cover?('foo') # => false

r = ('a'..'d')
r.cover?('a')     # => true
r.cover?('d')     # => true
r.cover?(' ')     # => false
r.cover?('e')     # => false
r.cover?(0)       # => false

For range r with excluded end value (#exclude_end? == true), evaluates thus:

r.begin <= object < r.end

Examples:

r = (1...4)
r.cover?(1)     # => true
r.cover?(3)     # => true
r.cover?(0)     # => false
r.cover?(4)     # => false
r.cover?('foo') # => false

r = ('a'...'d')
r.cover?('a')     # => true
r.cover?('c')     # => true
r.cover?(' ')     # => false
r.cover?('d')     # => false
r.cover?(0)       # => false

With range argument range, compares the first and last elements of self and range:

r = (1..4)
r.cover?(1..4)     # => true
r.cover?(0..4)     # => false
r.cover?(1..5)     # => false
r.cover?('a'..'d') # => false

r = (1...4)
r.cover?(1..3)     # => true
r.cover?(1..4)     # => false

If begin and end are numeric, cover? behaves like include?

(1..3).cover?(1.5) # => true
(1..3).include?(1.5) # => true

But when not numeric, the two methods may differ:

('a'..'d').cover?('cc')   # => true
('a'..'d').include?('cc') # => false

Returns false if either:

  • The begin value of self is larger than its end value.

  • An internal call to #<=> returns nil; that is, the operands are not comparable.

Beginless ranges cover all values of the same type before the end, excluding the end for exclusive ranges. Beginless ranges cover ranges that end before the end of the beginless range, or at the end of the beginless range for inclusive ranges.

(..2).cover?(1)     # => true
(..2).cover?(2)     # => true
(..2).cover?(3)     # => false
(...2).cover?(2)    # => false
(..2).cover?("2")   # => false
(..2).cover?(..2)   # => true
(..2).cover?(...2)  # => true
(..2).cover?(.."2") # => false
(...2).cover?(..2)  # => false

Endless ranges cover all values of the same type after the beginning. Endless exclusive ranges do not cover endless inclusive ranges.

(2..).cover?(1)     # => false
(2..).cover?(3)     # => true
(2...).cover?(3)    # => true
(2..).cover?(2)     # => true
(2..).cover?("2")   # => false
(2..).cover?(2..)   # => true
(2..).cover?(2...)  # => true
(2..).cover?("2"..) # => false
(2...).cover?(2..)  # => false
(2...).cover?(3...) # => true
(2...).cover?(3..)  # => false
(3..).cover?(2..)   # => false

Ranges that are both beginless and endless cover all values and ranges, and return true for all arguments, with the exception that beginless and endless exclusive ranges do not cover endless inclusive ranges.

(nil...).cover?(Object.new) # => true
(nil...).cover?(nil...)     # => true
(nil..).cover?(nil...)      # => true
(nil...).cover?(nil..)      # => false
(nil...).cover?(1..)        # => false

Related: Range#include?.

static VALUE
range_cover(VALUE range, VALUE val)
{
    VALUE beg, end;

    beg = RANGE_BEG(range);
    end = RANGE_END(range);

    if (rb_obj_is_kind_of(val, rb_cRange)) {
        return RBOOL(r_cover_range_p(range, beg, end, val));
    }
    return r_cover_p(range, beg, end, val);
}
each {|element| ... } → self
each → an_enumerator

With a block given, passes each element of self to the block:

a = []
(1..4).each {|element| a.push(element) } # => 1..4
a # => [1, 2, 3, 4]

Raises an exception unless self.first.respond_to?(:succ).

With no block given, returns an enumerator.

static VALUE
range_each(VALUE range)
{
    VALUE beg, end;
    long i;

    RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size);

    beg = RANGE_BEG(range);
    end = RANGE_END(range);

    if (FIXNUM_P(beg) && NIL_P(end)) {
        range_each_fixnum_endless(beg);
    }
    else if (FIXNUM_P(beg) && FIXNUM_P(end)) { /* fixnums are special */
        return range_each_fixnum_loop(beg, end, range);
    }
    else if (RB_INTEGER_TYPE_P(beg) && (NIL_P(end) || RB_INTEGER_TYPE_P(end))) {
        if (SPECIAL_CONST_P(end) || RBIGNUM_POSITIVE_P(end)) { /* end >= FIXNUM_MIN */
            if (!FIXNUM_P(beg)) {
                if (RBIGNUM_NEGATIVE_P(beg)) {
                    do {
                        rb_yield(beg);
                    } while (!FIXNUM_P(beg = rb_big_plus(beg, INT2FIX(1))));
                    if (NIL_P(end)) range_each_fixnum_endless(beg);
                    if (FIXNUM_P(end)) return range_each_fixnum_loop(beg, end, range);
                }
                else {
                    if (NIL_P(end)) range_each_bignum_endless(beg);
                    if (FIXNUM_P(end)) return range;
                }
            }
            if (FIXNUM_P(beg)) {
                i = FIX2LONG(beg);
                do {
                    rb_yield(LONG2FIX(i));
                } while (POSFIXABLE(++i));
                beg = LONG2NUM(i);
            }
            ASSUME(!FIXNUM_P(beg));
            ASSUME(!SPECIAL_CONST_P(end));
        }
        if (!FIXNUM_P(beg) && RBIGNUM_SIGN(beg) == RBIGNUM_SIGN(end)) {
            if (EXCL(range)) {
                while (rb_big_cmp(beg, end) == INT2FIX(-1)) {
                    rb_yield(beg);
                    beg = rb_big_plus(beg, INT2FIX(1));
                }
            }
            else {
                VALUE c;
                while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) {
                    rb_yield(beg);
                    if (c == INT2FIX(0)) break;
                    beg = rb_big_plus(beg, INT2FIX(1));
                }
            }
        }
    }
    else if (SYMBOL_P(beg) && (NIL_P(end) || SYMBOL_P(end))) { /* symbols are special */
        beg = rb_sym2str(beg);
        if (NIL_P(end)) {
            rb_str_upto_endless_each(beg, sym_each_i, 0);
        }
        else {
            rb_str_upto_each(beg, rb_sym2str(end), EXCL(range), sym_each_i, 0);
        }
    }
    else {
        VALUE tmp = rb_check_string_type(beg);

        if (!NIL_P(tmp)) {
            if (!NIL_P(end)) {
                rb_str_upto_each(tmp, end, EXCL(range), each_i, 0);
            }
            else {
                rb_str_upto_endless_each(tmp, each_i, 0);
            }
        }
        else {
            if (!discrete_object_p(beg)) {
                rb_raise(rb_eTypeError, "can't iterate from %s",
                         rb_obj_classname(beg));
            }
            if (!NIL_P(end))
                range_each_func(range, each_i, 0);
            else
                for (;; beg = rb_funcallv(beg, id_succ, 0, 0))
                    rb_yield(beg);
        }
    }
    return range;
}
end → object

Returns the object that defines the end of self.

(1..4).end  # => 4
(1...4).end # => 4
(1..).end   # => nil

Related: Range#begin, Range#last.

static VALUE
range_end(VALUE range)
{
    return RANGE_END(range);
}
entries
Alias for: to_a
eql?(other) → true or false

Returns true if and only if:

  • other is a range.

  • other.begin.eql?(self.begin).

  • other.end.eql?(self.end).

  • other.exclude_end? == self.exclude_end?.

Otherwise returns false.

r = (1..5)
r.eql?(1..5)                  # => true
r = Range.new(1, 5)
r.eql?('foo')                 # => false
r.eql?(2..5)                  # => false
r.eql?(1..4)                  # => false
r.eql?(1...5)                 # => false
r.eql?(Range.new(1, 5, true)) # => false

Note that even with the same argument, the return values of == and eql? can differ:

(1..2) == (1..2.0)   # => true
(1..2).eql? (1..2.0) # => false

Related: Range#==.

static VALUE
range_eql(VALUE range, VALUE obj)
{
    if (range == obj)
        return Qtrue;
    if (!rb_obj_is_kind_of(obj, rb_cRange))
        return Qfalse;
    return rb_exec_recursive_paired(recursive_eql, range, obj, obj);
}
exclude_end? → true or false

Returns true if self excludes its end value; false otherwise:

Range.new(2, 5).exclude_end?       # => false
Range.new(2, 5, true).exclude_end? # => true
(2..5).exclude_end?                # => false
(2...5).exclude_end?               # => true
static VALUE
range_exclude_end_p(VALUE range)
{
    return RBOOL(EXCL(range));
}
first → object
first(n) → array

With no argument, returns the first element of self, if it exists:

(1..4).first     # => 1
('a'..'d').first # => "a"

With non-negative integer argument n given, returns the first n elements in an array:

(1..10).first(3) # => [1, 2, 3]
(1..10).first(0) # => []
(1..4).first(50) # => [1, 2, 3, 4]

Raises an exception if there is no first element:

(..4).first # Raises RangeError
static VALUE
range_first(int argc, VALUE *argv, VALUE range)
{
    VALUE n, ary[2];

    if (NIL_P(RANGE_BEG(range))) {
        rb_raise(rb_eRangeError, "cannot get the first element of beginless range");
    }
    if (argc == 0) return RANGE_BEG(range);

    rb_scan_args(argc, argv, "1", &n);
    ary[0] = n;
    ary[1] = rb_ary_new2(NUM2LONG(n));
    rb_block_call(range, idEach, 0, 0, first_i, (VALUE)ary);

    return ary[1];
}
hash → integer

Returns the integer hash value for self. Two range objects r0 and r1 have the same hash value if and only if r0.eql?(r1).

Related: Range#eql?, Object#hash.

static VALUE
range_hash(VALUE range)
{
    st_index_t hash = EXCL(range);
    VALUE v;

    hash = rb_hash_start(hash);
    v = rb_hash(RANGE_BEG(range));
    hash = rb_hash_uint(hash, NUM2LONG(v));
    v = rb_hash(RANGE_END(range));
    hash = rb_hash_uint(hash, NUM2LONG(v));
    hash = rb_hash_uint(hash, EXCL(range) << 24);
    hash = rb_hash_end(hash);

    return ST2FIX(hash);
}
include?(object) → true or false

Returns true if object is an element of self, false otherwise:

(1..4).include?(2)        # => true
(1..4).include?(5)        # => false
(1..4).include?(4)        # => true
(1...4).include?(4)       # => false
('a'..'d').include?('b')  # => true
('a'..'d').include?('e')  # => false
('a'..'d').include?('B')  # => false
('a'..'d').include?('d')  # => true
('a'...'d').include?('d') # => false

If begin and end are numeric, include? behaves like cover?

(1..3).include?(1.5) # => true
(1..3).cover?(1.5) # => true

But when not numeric, the two methods may differ:

('a'..'d').include?('cc') # => false
('a'..'d').cover?('cc')   # => true

Related: Range#cover?.

Alias for: member?
inspect → string

Returns a string representation of self, including begin.inspect and end.inspect:

(1..4).inspect  # => "1..4"
(1...4).inspect # => "1...4"
(1..).inspect   # => "1.."
(..4).inspect   # => "..4"

Note that returns from to_s and inspect may differ:

('a'..'d').to_s    # => "a..d"
('a'..'d').inspect # => "\"a\"..\"d\""

Related: Range#to_s.

static VALUE
range_inspect(VALUE range)
{
    return rb_exec_recursive(inspect_range, range, 0);
}
last → object
last(n) → array

With no argument, returns the last element of self, if it exists:

(1..4).last     # => 4
('a'..'d').last # => "d"

Note that last with no argument returns the end element of self even if exclude_end? is true:

(1...4).last     # => 4
('a'...'d').last # => "d"

With non-negative integer argument n given, returns the last n elements in an array:

(1..10).last(3) # => [8, 9, 10]
(1..10).last(0) # => []
(1..4).last(50) # => [1, 2, 3, 4]

Note that last with argument does not return the end element of self if exclude_end? it true:

(1...4).last(3)     # => [1, 2, 3]
('a'...'d').last(3) # => ["a", "b", "c"]

Raises an exception if there is no last element:

(1..).last # Raises RangeError
static VALUE
range_last(int argc, VALUE *argv, VALUE range)
{
    VALUE b, e;

    if (NIL_P(RANGE_END(range))) {
        rb_raise(rb_eRangeError, "cannot get the last element of endless range");
    }
    if (argc == 0) return RANGE_END(range);

    b = RANGE_BEG(range);
    e = RANGE_END(range);
    if (RB_INTEGER_TYPE_P(b) && RB_INTEGER_TYPE_P(e) &&
        RB_LIKELY(rb_method_basic_definition_p(rb_cRange, idEach))) {
        return rb_int_range_last(argc, argv, range);
    }
    return rb_ary_last(argc, argv, rb_Array(range));
}
max → object
max(n) → array
max {|a, b| ... } → object
max(n) {|a, b| ... } → array

Returns the maximum value in self, using method #<=> or a given block for comparison.

With no argument and no block given, returns the maximum-valued element of self.

(1..4).max     # => 4
('a'..'d').max # => "d"
(-4..-1).max   # => -1

With non-negative integer argument n given, and no block given, returns the n maximum-valued elements of self in an array:

(1..4).max(2)     # => [4, 3]
('a'..'d').max(2) # => ["d", "c"]
(-4..-1).max(2)   # => [-1, -2]
(1..4).max(50)    # => [4, 3, 2, 1]

If a block is given, it is called:

  • First, with the first two element of self.

  • Then, sequentially, with the so-far maximum value and the next element of self.

To illustrate:

(1..4).max {|a, b| p [a, b]; a <=> b } # => 4

Output:

[2, 1]
[3, 2]
[4, 3]

With no argument and a block given, returns the return value of the last call to the block:

(1..4).max {|a, b| -(a <=> b) } # => 1

With non-negative integer argument n given, and a block given, returns the return values of the last n calls to the block in an array:

(1..4).max(2) {|a, b| -(a <=> b) }  # => [1, 2]
(1..4).max(50) {|a, b| -(a <=> b) } # => [1, 2, 3, 4]

Returns an empty array if n is zero:

(1..4).max(0)                      # => []
(1..4).max(0) {|a, b| -(a <=> b) } # => []

Returns nil or an empty array if:

  • The begin value of the range is larger than the end value:

    (4..1).max                         # => nil
    (4..1).max(2)                      # => []
    (4..1).max {|a, b| -(a <=> b) }    # => nil
    (4..1).max(2) {|a, b| -(a <=> b) } # => []
    
  • The begin value of an exclusive range is equal to the end value:

    (1...1).max                          # => nil
    (1...1).max(2)                       # => []
    (1...1).max  {|a, b| -(a <=> b) }    # => nil
    (1...1).max(2)  {|a, b| -(a <=> b) } # => []
    

Raises an exception if either:

  • self is a endless range: (1..).

  • A block is given and self is a beginless range.

Related: Range#min, Range#minmax.

static VALUE
range_max(int argc, VALUE *argv, VALUE range)
{
    VALUE e = RANGE_END(range);
    int nm = FIXNUM_P(e) || rb_obj_is_kind_of(e, rb_cNumeric);

    if (NIL_P(RANGE_END(range))) {
        rb_raise(rb_eRangeError, "cannot get the maximum of endless range");
    }

    VALUE b = RANGE_BEG(range);

    if (rb_block_given_p() || (EXCL(range) && !nm) || argc) {
        if (NIL_P(b)) {
            rb_raise(rb_eRangeError, "cannot get the maximum of beginless range with custom comparison method");
        }
        return rb_call_super(argc, argv);
    }
    else {
        int c = NIL_P(b) ? -1 : OPTIMIZED_CMP(b, e);

        if (c > 0)
            return Qnil;
        if (EXCL(range)) {
            if (!RB_INTEGER_TYPE_P(e)) {
                rb_raise(rb_eTypeError, "cannot exclude non Integer end value");
            }
            if (c == 0) return Qnil;
            if (!RB_INTEGER_TYPE_P(b)) {
                rb_raise(rb_eTypeError, "cannot exclude end value with non Integer begin value");
            }
            if (FIXNUM_P(e)) {
                return LONG2NUM(FIX2LONG(e) - 1);
            }
            return rb_funcall(e, '-', 1, INT2FIX(1));
        }
        return e;
    }
}
member?
Also aliased as: include?
min → object
min(n) → array
min {|a, b| ... } → object
min(n) {|a, b| ... } → array

Returns the minimum value in self, using method #<=> or a given block for comparison.

With no argument and no block given, returns the minimum-valued element of self.

(1..4).min     # => 1
('a'..'d').min # => "a"
(-4..-1).min   # => -4

With non-negative integer argument n given, and no block given, returns the n minimum-valued elements of self in an array:

(1..4).min(2)     # => [1, 2]
('a'..'d').min(2) # => ["a", "b"]
(-4..-1).min(2)   # => [-4, -3]
(1..4).min(50)    # => [1, 2, 3, 4]

If a block is given, it is called:

  • First, with the first two element of self.

  • Then, sequentially, with the so-far minimum value and the next element of self.

To illustrate:

(1..4).min {|a, b| p [a, b]; a <=> b } # => 1

Output:

[2, 1]
[3, 1]
[4, 1]

With no argument and a block given, returns the return value of the last call to the block:

(1..4).min {|a, b| -(a <=> b) } # => 4

With non-negative integer argument n given, and a block given, returns the return values of the last n calls to the block in an array:

(1..4).min(2) {|a, b| -(a <=> b) }  # => [4, 3]
(1..4).min(50) {|a, b| -(a <=> b) } # => [4, 3, 2, 1]

Returns an empty array if n is zero:

(1..4).min(0)                      # => []
(1..4).min(0) {|a, b| -(a <=> b) } # => []

Returns nil or an empty array if:

  • The begin value of the range is larger than the end value:

    (4..1).min                         # => nil
    (4..1).min(2)                      # => []
    (4..1).min {|a, b| -(a <=> b) }    # => nil
    (4..1).min(2) {|a, b| -(a <=> b) } # => []
    
  • The begin value of an exclusive range is equal to the end value:

    (1...1).min                          # => nil
    (1...1).min(2)                       # => []
    (1...1).min  {|a, b| -(a <=> b) }    # => nil
    (1...1).min(2)  {|a, b| -(a <=> b) } # => []
    

Raises an exception if either:

  • self is a beginless range: (..4).

  • A block is given and self is an endless range.

Related: Range#max, Range#minmax.

static VALUE
range_min(int argc, VALUE *argv, VALUE range)
{
    if (NIL_P(RANGE_BEG(range))) {
        rb_raise(rb_eRangeError, "cannot get the minimum of beginless range");
    }

    if (rb_block_given_p()) {
        if (NIL_P(RANGE_END(range))) {
            rb_raise(rb_eRangeError, "cannot get the minimum of endless range with custom comparison method");
        }
        return rb_call_super(argc, argv);
    }
    else if (argc != 0) {
        return range_first(argc, argv, range);
    }
    else {
        VALUE b = RANGE_BEG(range);
        VALUE e = RANGE_END(range);
        int c = NIL_P(e) ? -1 : OPTIMIZED_CMP(b, e);

        if (c > 0 || (c == 0 && EXCL(range)))
            return Qnil;
        return b;
    }
}
minmax → [object, object]
minmax {|a, b| ... } → [object, object]

Returns a 2-element array containing the minimum and maximum value in self, either according to comparison method #<=> or a given block.

With no block given, returns the minimum and maximum values, using #<=> for comparison:

(1..4).minmax     # => [1, 4]
(1...4).minmax    # => [1, 3]
('a'..'d').minmax # => ["a", "d"]
(-4..-1).minmax   # => [-4, -1]

With a block given, the block must return an integer:

  • Negative if a is smaller than b.

  • Zero if a and b are equal.

  • Positive if a is larger than b.

The block is called self.size times to compare elements; returns a 2-element Array containing the minimum and maximum values from self, per the block:

(1..4).minmax {|a, b| -(a <=> b) } # => [4, 1]

Returns [nil, nil] if:

  • The begin value of the range is larger than the end value:

    (4..1).minmax                      # => [nil, nil]
    (4..1).minmax {|a, b| -(a <=> b) } # => [nil, nil]
    
  • The begin value of an exclusive range is equal to the end value:

    (1...1).minmax                          # => [nil, nil]
    (1...1).minmax  {|a, b| -(a <=> b) }    # => [nil, nil]
    

Raises an exception if self is a beginless or an endless range.

Related: Range#min, Range#max.

static VALUE
range_minmax(VALUE range)
{
    if (rb_block_given_p()) {
        return rb_call_super(0, NULL);
    }
    return rb_assoc_new(
        rb_funcall(range, id_min, 0),
        rb_funcall(range, id_max, 0)
    );
}
overlap?(range) → true or false

Returns true if range overlaps with self, false otherwise:

(0..2).overlap?(1..3) #=> true
(0..2).overlap?(3..4) #=> false
(0..).overlap?(..0)   #=> true

With non-range argument, raises TypeError.

(1..3).overlap?(1)         # TypeError

Returns false if an internal call to #<=> returns nil; that is, the operands are not comparable.

(1..3).overlap?('a'..'d')  # => false

Returns false if self or range is empty. “Empty range” means that its begin value is larger than, or equal for an exclusive range, its end value.

(4..1).overlap?(2..3)      # => false
(4..1).overlap?(..3)       # => false
(4..1).overlap?(2..)       # => false
(2...2).overlap?(1..2)     # => false

(1..4).overlap?(3..2)      # => false
(..4).overlap?(3..2)       # => false
(1..).overlap?(3..2)       # => false
(1..2).overlap?(2...2)     # => false

Returns false if the begin value one of self and range is larger than, or equal if the other is an exclusive range, the end value of the other:

(4..5).overlap?(2..3)      # => false
(4..5).overlap?(2...4)     # => false

(1..2).overlap?(3..4)      # => false
(1...3).overlap?(3..4)     # => false

Returns false if the end value one of self and range is larger than, or equal for an exclusive range, the end value of the other:

(4..5).overlap?(2..3)      # => false
(4..5).overlap?(2...4)     # => false

(1..2).overlap?(3..4)      # => false
(1...3).overlap?(3..4)     # => false

Note that the method wouldn’t make any assumptions about the beginless range being actually empty, even if its upper bound is the minimum possible value of its type, so all this would return true:

(...-Float::INFINITY).overlap?(...-Float::INFINITY) # => true
(..."").overlap?(..."") # => true
(...[]).overlap?(...[]) # => true

Even if those ranges are effectively empty (no number can be smaller than -Float::INFINITY), they are still considered overlapping with themselves.

Related: Range#cover?.

static VALUE
range_overlap(VALUE range, VALUE other)
{
    if (!rb_obj_is_kind_of(other, rb_cRange)) {
        rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (expected Range)",
                 rb_class_name(rb_obj_class(other)));
    }

    VALUE self_beg = RANGE_BEG(range);
    VALUE self_end = RANGE_END(range);
    int self_excl = EXCL(range);
    VALUE other_beg = RANGE_BEG(other);
    VALUE other_end = RANGE_END(other);
    int other_excl = EXCL(other);

    if (empty_region_p(self_beg, other_end, other_excl)) return Qfalse;
    if (empty_region_p(other_beg, self_end, self_excl)) return Qfalse;

    if (!NIL_P(self_beg) && !NIL_P(other_beg)) {
        VALUE cmp = rb_funcall(self_beg, id_cmp, 1, other_beg);
        if (NIL_P(cmp)) return Qfalse;
        /* if both begin values are equal, no more comparisons needed */
        if (rb_cmpint(cmp, self_beg, other_beg) == 0) return Qtrue;
    }
    else if (NIL_P(self_beg) && !NIL_P(self_end) && NIL_P(other_beg)) {
        VALUE cmp = rb_funcall(self_end, id_cmp, 1, other_end);
        return RBOOL(!NIL_P(cmp));
    }

    if (empty_region_p(self_beg, self_end, self_excl)) return Qfalse;
    if (empty_region_p(other_beg, other_end, other_excl)) return Qfalse;

    return Qtrue;
}
reverse_each {|element| ... } → self
reverse_each → an_enumerator

With a block given, passes each element of self to the block in reverse order:

a = []
(1..4).reverse_each {|element| a.push(element) } # => 1..4
a # => [4, 3, 2, 1]

a = []
(1...4).reverse_each {|element| a.push(element) } # => 1...4
a # => [3, 2, 1]

With no block given, returns an enumerator.

static VALUE
range_reverse_each(VALUE range)
{
    RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size);

    VALUE beg = RANGE_BEG(range);
    VALUE end = RANGE_END(range);
    int excl = EXCL(range);

    if (NIL_P(end)) {
        rb_raise(rb_eTypeError, "can't iterate from %s",
                 rb_obj_classname(end));
    }

    if (FIXNUM_P(beg) && FIXNUM_P(end)) {
        if (excl) {
            if (end == LONG2FIX(FIXNUM_MIN)) return range;

            end = rb_int_minus(end, INT2FIX(1));
        }

        range_reverse_each_fixnum_section(beg, end);
    }
    else if ((NIL_P(beg) || RB_INTEGER_TYPE_P(beg)) && RB_INTEGER_TYPE_P(end)) {
        if (excl) {
            end = rb_int_minus(end, INT2FIX(1));
        }
        range_reverse_each_positive_bignum_section(beg, end);
        range_reverse_each_fixnum_section(beg, end);
        range_reverse_each_negative_bignum_section(beg, end);
    }
    else {
        return rb_call_super(0, NULL);
    }

    return range;
}
size → non_negative_integer or Infinity or nil

Returns the count of elements in self if both begin and end values are numeric; otherwise, returns nil:

(1..4).size      # => 4
(1...4).size     # => 3
(1..).size       # => Infinity
('a'..'z').size  # => nil

If self is not iterable, raises an exception:

(0.5..2.5).size  # TypeError
(..1).size       # TypeError

Related: Range#count.

static VALUE
range_size(VALUE range)
{
    VALUE b = RANGE_BEG(range), e = RANGE_END(range);

    if (RB_INTEGER_TYPE_P(b)) {
        if (rb_obj_is_kind_of(e, rb_cNumeric)) {
            return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range));
        }
        if (NIL_P(e)) {
            return DBL2NUM(HUGE_VAL);
        }
    }

    if (!discrete_object_p(b)) {
        rb_raise(rb_eTypeError, "can't iterate from %s",
                 rb_obj_classname(b));
    }

    return Qnil;
}
step(s = 1) {|element| ... } → self
step(s = 1) → enumerator/arithmetic_sequence

Iterates over the elements of range in steps of s. The iteration is performed by + operator:

(0..6).step(2) { puts _1 } #=> 1..5
# Prints: 0, 2, 4, 6

# Iterate between two dates in step of 1 day (24 hours)
(Time.utc(2022, 2, 24)..Time.utc(2022, 3, 1)).step(24*60*60) { puts _1 }
# Prints:
#   2022-02-24 00:00:00 UTC
#   2022-02-25 00:00:00 UTC
#   2022-02-26 00:00:00 UTC
#   2022-02-27 00:00:00 UTC
#   2022-02-28 00:00:00 UTC
#   2022-03-01 00:00:00 UTC

If + step decreases the value, iteration is still performed when step begin is higher than the end:

(0..6).step(-2) { puts _1 }
# Prints nothing

(6..0).step(-2) { puts _1 }
# Prints: 6, 4, 2, 0

(Time.utc(2022, 3, 1)..Time.utc(2022, 2, 24)).step(-24*60*60) { puts _1 }
# Prints:
#   2022-03-01 00:00:00 UTC
#   2022-02-28 00:00:00 UTC
#   2022-02-27 00:00:00 UTC
#   2022-02-26 00:00:00 UTC
#   2022-02-25 00:00:00 UTC
#   2022-02-24 00:00:00 UTC

When the block is not provided, and range boundaries and step are Numeric, the method returns Enumerator::ArithmeticSequence.

(1..5).step(2) # => ((1..5).step(2))
(1.0..).step(1.5) #=> ((1.0..).step(1.5))
(..3r).step(1/3r) #=> ((..3/1).step((1/3)))

Enumerator::ArithmeticSequence can be further used as a value object for iteration or slicing of collections (see Array#[]). There is a convenience method % with behavior similar to step to produce arithmetic sequences more expressively:

# Same as (1..5).step(2)
(1..5) % 2 # => ((1..5).%(2))

In a generic case, when the block is not provided, Enumerator is returned:

('a'..).step('b')         #=> #<Enumerator: "a"..:step("b")>
('a'..).step('b').take(3) #=> ["a", "ab", "abb"]

If s is not provided, it is considered 1 for ranges with numeric begin:

(1..5).step { p _1 }
# Prints: 1, 2, 3, 4, 5

For non-Numeric ranges, step absence is an error:

(Time.utc(2022, 3, 1)..Time.utc(2022, 2, 24)).step { p _1 }
# raises: step is required for non-numeric ranges (ArgumentError)

For backward compatibility reasons, String ranges support the iteration both with string step and with integer step. In the latter case, the iteration is performed by calculating the next values with String#succ:

('a'..'e').step(2) { p _1 }
# Prints: a, c, e
('a'..'e').step { p _1 }
# Default step 1; prints: a, b, c, d, e
static VALUE
range_step(int argc, VALUE *argv, VALUE range)
{
    VALUE b, e, v, step;
    int c, dir;

    b = RANGE_BEG(range);
    e = RANGE_END(range);

    const VALUE b_num_p = rb_obj_is_kind_of(b, rb_cNumeric);
    const VALUE e_num_p = rb_obj_is_kind_of(e, rb_cNumeric);
    // For backward compatibility reasons (conforming to behavior before 3.4), String/Symbol
    // supports both old behavior ('a'..).step(1) and new behavior ('a'..).step('a')
    // Hence the additional conversion/addional checks.
    const VALUE str_b = rb_check_string_type(b);
    const VALUE sym_b = SYMBOL_P(b) ? rb_sym2str(b) : Qnil;

    if (rb_check_arity(argc, 0, 1))
        step = argv[0];
    else {
        if (b_num_p || !NIL_P(str_b) || !NIL_P(sym_b) || (NIL_P(b) && e_num_p))
            step = INT2FIX(1);
        else
            rb_raise(rb_eArgError, "step is required for non-numeric ranges");
    }

    const VALUE step_num_p = rb_obj_is_kind_of(step, rb_cNumeric);

    if (step_num_p && b_num_p && rb_equal(step, INT2FIX(0))) {
        rb_raise(rb_eArgError, "step can't be 0");
    }

    if (!rb_block_given_p()) {
        // This code is allowed to create even beginless ArithmeticSequence, which can be useful,
        // e.g., for array slicing:
        //   ary[(..-1) % 3]
        if (step_num_p && ((b_num_p && (NIL_P(e) || e_num_p)) || (NIL_P(b) && e_num_p))) {
            return rb_arith_seq_new(range, ID2SYM(rb_frame_this_func()), argc, argv,
                    range_step_size, b, e, step, EXCL(range));
        }

        // ...but generic Enumerator from beginless range is useless and probably an error.
        if (NIL_P(b)) {
            rb_raise(rb_eArgError, "#step for non-numeric beginless ranges is meaningless");
        }

        RETURN_SIZED_ENUMERATOR(range, argc, argv, 0);
    }

    if (NIL_P(b)) {
        rb_raise(rb_eArgError, "#step iteration for beginless ranges is meaningless");
    }

    if (FIXNUM_P(b) && NIL_P(e) && FIXNUM_P(step)) {
        /* perform summation of numbers in C until their reach Fixnum limit */
        long i = FIX2LONG(b), unit = FIX2LONG(step);
        do {
            rb_yield(LONG2FIX(i));
            i += unit;          /* FIXABLE+FIXABLE never overflow */
        } while (FIXABLE(i));
        b = LONG2NUM(i);

        /* then switch to Bignum API */
        for (;; b = rb_big_plus(b, step))
            rb_yield(b);
    }
    else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) {
        /* fixnums are special: summation is performed in C for performance */
        long end = FIX2LONG(e);
        long i, unit = FIX2LONG(step);

        if (unit < 0) {
            if (!EXCL(range))
                end -= 1;
            i = FIX2LONG(b);
            while (i > end) {
                rb_yield(LONG2NUM(i));
                i += unit;
            }
        } else {
            if (!EXCL(range))
                end += 1;
            i = FIX2LONG(b);
            while (i < end) {
                rb_yield(LONG2NUM(i));
                i += unit;
            }
        }
    }
    else if (b_num_p && step_num_p && ruby_float_step(b, e, step, EXCL(range), TRUE)) {
        /* done */
    } else if (!NIL_P(str_b) && FIXNUM_P(step)) {
        // backwards compatibility behavior for String only, when no step/Integer step is passed
        // See discussion in https://bugs.ruby-lang.org/issues/18368

        VALUE iter[2] = {INT2FIX(1), step};

        if (NIL_P(e)) {
            rb_str_upto_endless_each(str_b, step_i, (VALUE)iter);
        }
        else {
            rb_str_upto_each(str_b, e, EXCL(range), step_i, (VALUE)iter);
        }
    } else if (!NIL_P(sym_b) && FIXNUM_P(step)) {
        // same as above: backward compatibility for symbols

        VALUE iter[2] = {INT2FIX(1), step};

        if (NIL_P(e)) {
            rb_str_upto_endless_each(sym_b, sym_step_i, (VALUE)iter);
        }
        else {
            rb_str_upto_each(sym_b, rb_sym2str(e), EXCL(range), sym_step_i, (VALUE)iter);
        }
    } else {
        v = b;
        if (!NIL_P(e)) {
            if (b_num_p && step_num_p && r_less(step, INT2FIX(0)) < 0) {
                // iterate backwards, for consistency with ArithmeticSequence
                if (EXCL(range)) {
                    for (; r_less(e, v) < 0; v = rb_funcall(v, id_plus, 1, step))
                        rb_yield(v);
                }
                else {
                    for (; (c = r_less(e, v)) <= 0; v = rb_funcall(v, id_plus, 1, step)) {
                        rb_yield(v);
                        if (!c) break;
                    }
                }

            } else {
                // Direction of the comparison. We use it as a comparison operator in cycle:
                // if begin < end, the cycle performs while value < end (iterating forward)
                // if begin > end, the cycle performs while value > end (iterating backward with
                // a negative step)
                dir = r_less(b, e);
                // One preliminary addition to check the step moves iteration in the same direction as
                // from begin to end; otherwise, the iteration should be empty.
                if (r_less(b, rb_funcall(b, id_plus, 1, step)) == dir) {
                    if (EXCL(range)) {
                        for (; r_less(v, e) == dir; v = rb_funcall(v, id_plus, 1, step))
                            rb_yield(v);
                    }
                    else {
                        for (; (c = r_less(v, e)) == dir || c == 0; v = rb_funcall(v, id_plus, 1, step)) {
                            rb_yield(v);
                            if (!c) break;
                        }
                    }
                }
            }
        }
        else
            for (;; v = rb_funcall(v, id_plus, 1, step))
                rb_yield(v);
    }
    return range;
}
to_a → array

Returns an array containing the elements in self, if a finite collection; raises an exception otherwise.

(1..4).to_a     # => [1, 2, 3, 4]
(1...4).to_a    # => [1, 2, 3]
('a'..'d').to_a # => ["a", "b", "c", "d"]
static VALUE
range_to_a(VALUE range)
{
    if (NIL_P(RANGE_END(range))) {
        rb_raise(rb_eRangeError, "cannot convert endless range to an array");
    }
    return rb_call_super(0, 0);
}
Also aliased as: entries
to_json (*args)

Returns a JSON string representing self:

require 'json/add/range'
puts (1..4).to_json
puts (1...4).to_json
puts ('a'..'d').to_json

Output:

{"json_class":"Range","a":[1,4,false]}
{"json_class":"Range","a":[1,4,true]}
{"json_class":"Range","a":["a","d",false]}
# File ext/json/lib/json/add/range.rb, line 51
def to_json(*args)
  as_json.to_json(*args)
end
to_s → string

Returns a string representation of self, including begin.to_s and end.to_s:

(1..4).to_s  # => "1..4"
(1...4).to_s # => "1...4"
(1..).to_s   # => "1.."
(..4).to_s   # => "..4"

Note that returns from to_s and inspect may differ:

('a'..'d').to_s    # => "a..d"
('a'..'d').inspect # => "\"a\"..\"d\""

Related: Range#inspect.

static VALUE
range_to_s(VALUE range)
{
    VALUE str, str2;

    str = rb_obj_as_string(RANGE_BEG(range));
    str2 = rb_obj_as_string(RANGE_END(range));
    str = rb_str_dup(str);
    rb_str_cat(str, "...", EXCL(range) ? 3 : 2);
    rb_str_append(str, str2);

    return str;
}